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Abstract The Tethered Space Net Robot (TSNR) is an innovative solution for active space debris

capture and removal. Its large envelope and simple capture method make it an attractive option for

this task. However, capturing maneuverable debris with the flexible and elastic underactuated net

poses significant challenges. To address this, a novel formation control method for the TSNR is

proposed through the integration of differential game theory and robust adaptive control in this

paper. Specifically, the trajectory of the TSNR is obtained through the solution of a real-time feed-

back pursuit-evasion game with a dynamic target, where the primary condition is to ensure the sta-

bility of the TSNR. Furthermore, to minimize tracking errors and maintain a specific configuration,

a robust adaptive formation control scheme with Artificial Potential Field (APF) based on a Finite-

Time Convergent Extended State Observer (FTCESO) is investigated. The proposed control

method has a key advantage in suppressing complex oscillations by a new adaptive law, thus pre-

cisely maintaining the configuration. Finally, numerical simulations are performed to demonstrate

the effectiveness of the proposed scheme.
� 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

On-orbit services, such as debris removal and non-cooperative
target capture, are promising trends for future space develop-

ment.1 To accomplish capture missions, flexible tethered space
systems have been proposed in the last few decades. These sys-
tems, such as the Tethered Space Net (TSN),2 Tethered Space

Robot (TSR),3 Tethered Space Net Robot (TSNR),4,5 and
others,6 connect the capturing device and target with a flexible
tether. The TSNR system, shown in Fig. 1, includes a platform

satellite, a main connection tether, a connecting net, and four



Fig. 1 TSNR system.
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corner Maneuverable Units (MUs), which are mostly used for
active debris capture and removal.

The TSNR’s capture mission consists of four phases: releas-
ing, approaching, capturing, and deorbiting. During the
approaching phase, the distances between the MUs are kept
very close so that the relative distance constraint must be sat-

isfied.4 To prevent the flexible net from tangling and the MUs
from colliding, a minimal separation distance must be set. A
maximal separation distance is also needed to avoid the bounc-

ing effect,7 which occurs when the aggressive elasticity of the
braid tether induces periodical transitions from slack to taut
and back to slack.

In recent years, researchers have extensively investigated
the control problems of the TSNR with relative constraints.
For instance, the work in Ref. 8 designed formation-keeping

control strategies using two artificial potential functions to
maintain the TSNR’s configuration while satisfying the rela-
tive distance constraint. In Ref. 9, a fuzzy-based adaptive
super-twisting sliding mode control was proposed to estimate

and suppress the complex oscillations of the TSNR. Liu et al.10

designed a continuous fixed-time consensus tracking controller
for the TSNR, considering the synchronization of the MUs.

The proposed control scheme can eliminate the chattering phe-
nomenon while ensuring convergence precision.

However, in previous work, the relative distance between

the TSNR and the target was excessively short. As a result,
the desired trajectory of the TSNR was simply determined as
a set of regular constant lines, without considering the target’s
potential maneuvers to evade capture. Furthermore, a suitable

control scheme under such maneuvering generated by a prob-
able pursuit-evasion game should be further studied. There-
fore, obtaining the short-distance interception trajectory

requires modeling the problem as a pursuit-evasion differential
game between two competitors, which is often used in many
studies. Ye et al.11 proposed a time-to-go estimation algorithm

based on zero effort miss for interception guidance strategies
for spacecrafts. The terminal interception time was calculated
by recursion. In Ref. 12, the game was converted into a two-

point boundary value problem by considering different thrus-
ter configurations of the pursuer and the evader, and was
solved by combining the heuristic searching and Newton
method. Liang et al.13 addressed game named TAD with three
players, including target, attacker, and defender. Based on a
barrier, the winning regions of players were obtained, and
the optimal strategies were identified and analyzed. In addi-

tion, a guidance problem in a two-on-two engagement with a
protector joining is investigated in Ref. 14. Two classes of
guidance schemes for spacecraft, based on norm differential

game and linear quadratic differential game strategies respec-
tively, were proposed. Furthermore, Chao et al.15 categorized
the game process into four phases, C1-C4, based on the switch-

ing time. To minimize fuel cost in the C1 and C3, a linear
quadratic differential game guidance scheme is utilized. And
a norm-bounded game guidance strategy is employed in the
C2 and C4 phases to satisfy the constraint of the control input.

Nonetheless, the traditional game scenarios are not suitable
for the TSNR, since its planning margin is quite narrow, owing
to the relative distance constraints between the MUs which are

more restrictive than communication distance limitations. Fur-
thermore, a minor tracking error can cause significant effects
on the system during practical capture missions. Therefore, it

is crucial to develop a control algorithm that ensures tracking
accuracy and reduces the impact of disturbances on the con-
straints and configuration. Finite-time formation control has

a great advantage for this problem, being able to limit the con-
vergence time to a small amount. By using the homogeneity
theory, there are many effective methods for finite-time con-
sensus for leader-following multi-agent systems proposed in

Refs. 16–18. With the strong robust and high-speed tracking
property of Sliding-Mode Control (SMC), the finite-time
cooperative tracking problem has also been investigated in

Ref. 19 for high-order multi-agent systems.
Nevertheless, the aforementioned studies do not consider

maneuvering targets or stringent formation constraints. In this

paper, a formation control mechanism is introduced for the
TSNR to track the desired trajectory obtained through the
application of a pursuit-evasion game. This mechanism incor-

porates uncertainty perturbation compensation and relative
distance constraint assurance. The Finite-Time Convergent
Extended State Observer (FTCESO) has been extensively
applied as an essential method for estimating system states

and compensating for uncertainty disturbances due to its
finite-time convergence and lack of peak phenomenon. This
method has been previously utilized by Refs. 20,21. Further-

more, the APF method has been widely utilized in formation
control problems that require collision avoidance, as shown
by Refs. 22,23. Li et al.24 developed an improved APF method

for the follower-satellite that ensures the maintenance of a
collision-avoidance relative distance from the corresponding
leader-satellite within the desired communication range. In
addition, similar work has been conducted by Wang,25 Wu,26

and Xu,27 where they introduced the APF for satellite clusters
to achieve the desired formation pattern and collision avoid-
ance. Moreover, utilizing the APF, multiple innovative path-

planning schemes have been created for collision-free autono-
mous vehicles, as demonstrated in Refs. 28,29. Nonetheless, it
is worth noting that the derivative of the gradient of the APF

can cause violent oscillations, which negatively affect the effec-
tiveness of the controller.

This paper focuses on addressing trajectory planning and

configuration maintenance for the constrained TSNR during
dynamic target capturing. A novel game theory based forma-
tion control scheme is proposed in this paper. The main contri-
butions can be summarized as follows:



Fig. 2 Coordinate of TSNR system.
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(1) Unlike previous studies that focused on static targets

and regular constant trajectories,8–10 this paper presents
trajectories for the MUs obtained through the solution
of a pursuit-evasion game with a dynamic target.

(2) The pursuit-evasion game incorporates real-time feed-
back, ensuring that the generated trajectories satisfy
the constraint of configurational stability.

(3) A robust adaptive controller is proposed that effectively

suppresses tracking errors and ensures compliance with
relative distance constraints using the FTCESO and
the APF.

(4) To accurately maintain the TSNR configuration, a novel
adaptive law is developed to effectively suppress
vibrations.

The remainders are stated as follows. Section 2 presents the
mission of the TSNR and formulates the control problem. In
Section 3, a novel formation control strategy is proposed,

and its stability is analyzed. In Section 4, the proposed scheme
is validated using numerical simulations and results. Section 5
concludes this paper.
2. Problem formulation

2.1. Mission description

This paper focuses on the approaching phase of the TSNR

capture mission, which involves a dynamic target that can
evade capture. Initially, the TSNR is stored in the platform
satellite. Once the target is detected, the TSNR is ejected and

passively unfolded. During the approaching phase, the TSNR
attempts to approach the target with an easy-capture pattern,
while the target seeks to evade by maximizing the relative dis-
tance. To achieve this, a trajectory based on game theory is

generated for the TSNR, and a formation control mechanism
is developed to ensure trajectory tracking accuracy and config-
uration maintenance. Assume that the two spacecraft in the

pursuit-evasion game with complete information, i.e., both
the TSNR and the target know each other’s cost functions
and control strategies, and relative information is given by

the visual navigation sensors on the MUs.

2.2. Dynamics modeling

To describe the orbit movements of the TSNR and the target,
the following coordinate frames are depicted in Fig. 2. The
Earth-Centered Inertial (ECI) frame, denoted by EXYZ, is
located at the center of the Earth. The non-inertial Local Ver-

tical Local Horizontal (LVLH) orbit coordinate frame,
denoted by Oxyz, is located at the platform satellite. The
TSNR only undergoes translation relative to the platform

satellite, and the relative distance is much smaller than the
orbital radius. Furthermore, the TSNR undergoes no rota-
tional motion relative to the platform satellite. The body-

fixed frame, denoted by Obxbybzb and located at the center
of the TSNR, is parallel to the orbital coordinate frame.

A full description of the TSNR has been provided in Ref. 4

(Section 3, Eqs. (1)–(10)). It includes the mechanical design of
the net and the four MUs, as well as the derivation of dynam-
ics equations, which can be expressed as follows:
_xi ¼ vi

_vi ¼ fi xi; við Þ þ ui þ di

�
ð1Þ

where xi denotes the relative position of the i-th MU in the
orbital frame, with i ¼ Aa; Ak; Ka; Kk;9 vi represents the

relative velocity, and ui denotes the control force; fi is the
dynamic function; di is the disturbance on the i-th MU caused
by the uncontrollable net and the orbital environment, which is

bounded.
During the approaching phase, the relative distance

between the adjacent MUs needs to be restricted to avoid
snapping elasticity and collision. This can be achieved through

the use of relative constraints:

H ¼ ‘0 < k xi � xj k < Lij þ d;
�

for i ¼ 1; 2; � � � ; N; and j 2 Xig
ð2Þ

where k � k denotes the Euclidean norm, ‘0 is the minimum
safety distance between the MUs, Lij is the side length of

the net, d is the maximum elastic elongation of the net side,

N is the number of the MUs, and Xi is the set of indices cor-
responding to the information neighbors of the i-th MU.

Remark 1. In this mission, the TSNR comprises one
virtual leader and four followers, where the leader obtains

the desired trajectory by solving the pursuit-evasion game
with a target, and followers refer to the four MUs. The
virtual leader is located at the center of the four MUs. In

addition to ensuring relative distance constraints Eq. (2)
while tracking the trajectories, the MUs need to
maintain a specific configuration, which will be obtained in

Section 3.
2.3. Some lemmas

Lemma 1. 24 If ki is a positive number, and K is a diagonal
matrix composed of ki, then the following relationships exists:

XN
i¼1

xT
i kix

c
i P kmin Kð Þ

XN
i¼1

xT
i xi

� � cþ1ð Þ=2 ð3Þ



Game theory based finite-time formation control using artificial potentials for tethered space net robot 361
where kmin Kð Þ represents the minimum eigenvalue of the gain

matrix K; c and N are positive constants.

Lemma 2. 30 Consider a nonlinear system _x ¼ f xð Þ. Suppose
there is a continuous positive Lyapunov function V xð Þ, and
real constants a > 0, b > 0, and 0 < c < 1. If V xð Þ satisfies the
following inequality:

_V xð Þ þ aV xð Þ þ bVc xð Þ 6 0 ð4Þ
then the system is globally fast finite-time stable, and the

convergence time Tf, depending on the initial state x 0ð Þ ¼ x0,

can be obtained as:

Tf 6 t0 þ 1

a 1� cð Þ ln
aV1�c x0ð Þ þ b

b
ð5Þ

where t0 is the initial time.

3. Controller design

A novel game theory based formation controller (as shown in
Fig. 3) is proposed in this section, including two parts: trajec-
tory planning and configuration maintenance. After obtaining

the desired trajectory by pursuit-evasion game, each MU
tracks its respective trajectory. Additionally, tracking errors
and various disturbances are approximated by FTCESO. Fur-
thermore, the APF method is employed to ensure collision-free

flight and maintain the required formation pattern, including
relative distance constraints. Moreover, the adaptive law in
the formation controller compensates for the disturbance

and the derivative of the gradient of the APF.

3.1. Pursuit-evasion game generated trajectory

When the target is maneuvering, the TSNR needs to con-
stantly plan its trajectory to catch up with the target while
maintaining its configuration. A real-time feedback pursuit-
Fig. 3 Schematic flowchart of t
evasion game is proposed to achieve this purpose. The initial
state of the virtual leader is located at the center of the
MUs. Set the leader and the target respectively as the pursuer

and evader in the pursuit-evasion game. For simplicity, only a
linear model without disturbance is considered for trajectory
optimization. Thus, the relative dynamics Eq. (1) of the two

players can be deduced as:

_qp ¼ Apqp þ Bpup

_qe ¼ Aeqe þ Beue

�
ð6Þ

where the states of the two players are depicted as:

qp ¼ xT
p ; v

T
p

h iT
and qe ¼ xT

e ; v
T
e

� �T
. up and ue are the desired

control forces of the pursuer and the evader. A and B are
dynamic functions of player. On the one hand, considering
that the forces the MUs can produce are limited, the following

inequality constraints are formulated:

�umax13 6 up 6 umax13 ð7Þ
where umax is the maximum force that a MU can produce in

one direction, 1n denotes a n-dimensional vector with all ele-
ments equal to one. Define the relative state between the two
players as qpe ¼ qp � qe, the relative dynamics can be written

as:

_qpe ¼ Apeqpe þ Bpup � Beue ð8Þ
In the pursuit-evasion game, the goal of the pursuer is to

intercept the evader at the minimum cost. Conversely, the eva-
der has the goal to increase the relative distance at the mini-
mum cost. The cost function can be expressed as:

min
up

max
ue

J ¼ 1

2
qT
pe tfð ÞSqpe tfð Þ þ 1

2

Z tf

t0

qT
peQqpe

�
þuTpRpup � uTe Reue

	
dt

ð9Þ
where t0 is the initial time, tf is the terminal time, S > 0,

Rp > 0, and Re > 0 are symmetric positive definite matrices,

Q P 0 is a semidefinite symmetric positive matrix. The cost
he proposed control scheme.
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function comprises three components, the first part

qT
pe tfð ÞSqpe tfð Þ is the terminal conditions, reflecting the pursuit

at the moment of termination. The second part qT
peQqpe repre-

sents the relative distance between the two players at each
moment, guiding the optimization of the cost function. The

third component uTpRpup � uTeReue focuses on the control

inputs exerted by each player, exhibiting an inverse relation-
ship due to the adversarial nature of the pursuit-evasion game.
Throughout the chase, the pursuer aims to minimize this cost

function, while the escaper seeks to maximize it.

Remark 2. In cost function Eq. (9), relative state qpe,

parametric Re, and control strategy ue can be obtained by

sensor estimations Refs. 3,31. In the game solving process of
this paper, it is assumed that the above quantities have been
obtained.

If both players in the game have complete information
about the opponent, the game is zero-sum and associated with

a saddle-point strategy pair. To derive the saddle-point
strategy pair, a Hamiltonian function H and a function of
terminal condition U are introduced as:

H ¼ kT Apeqpe þ Bpup � Beue
� �þ 1

2
qT
peQqpe þ uTpRpup � uTe Reue

� 	
U ¼ 1

2
qT
pe tfð ÞSqpe tfð Þ

8<:
ð10Þ

where k is an adjoint variable. The saddle-point strategy
satisfies the stationarity condition @H=@up ¼ 0 and

@H=@ue ¼ 0. Thus, one has:

up ¼ �R�1
p BT

pk

ue ¼ �R�1
e BT

e k

(
ð11Þ

The necessary condition for the optimal saddle-point solu-

tion includes the derivative of the adjoint variable, which is cal-
culated as:

k
:

¼ � @H

@qpe

¼ � AT
pekþQqpe

� 	
ð12Þ

with the terminal condition:

k tfð Þ ¼ @U
@qpe tfð Þ ¼ Sqpe tfð Þ ð13Þ

Assuming that the adjoint variable and the relative state

satisfy a linear feedback strategy, for any time 8t 2 t0; tf½ �,
the strategy always follows the form like in Eq. (13). Define
P as a symmetric positive definite matrix, one has:

k ¼ Pqpe ð14Þ
Substituting the relative dynamics Eqs. (8), (12) and (14), a

Riccati differential equation can be obtained as follows:

_Pþ AT
pePþ PApe � P BpR

�1
p BT

p

�
�BeR

�1
e BT

e

�
PþQ ¼ 0 ð15Þ

while the terminal condition satisfies P tfð Þ ¼ S.
If the pursuer and the evader do not confine the pursuit-

evasion game to a fixed time, but instead decide to keep the

game going, the problem can be considered as a problem of
differential countermeasure in the infinite time domain. Then
the Riccati differential equation Eq. (15) can be reformulated
as:

AT
pePþ PApe � P BpR

�1
p BT

p

�
�BeR

�1
e BT

e

�
PþQ ¼ 0 ð16Þ

The cost function Eq. (9) takes the following form:

min
up

max
ue

J ¼ 1

2

Z tf

t0

qT
peQqpe þ uTpRpup

�
�uTeReue

�
dt ð17Þ

Therefore, the saddle-point strategy pair, i.e., the solution
of the pursuit-evasion game is given by:

up ¼ �R�1
p BT

pPqpe

ue ¼ �R�1
e BT

e Pqpe

(
ð18Þ

By substituting Eq. (18) into the virtual leader’s dynamics
Eq. (6), the leader’s trajectory x0 and velocity v0 are given

by: q0 ¼ xT
0 ; v

T
0

� �T
. Let li 2 R3 ¼ lxi ; l

y
i ; l

z
i

� �T
, which represents

the desired displacement of the i-th MU relative to the leader.
Thus, the desired trajectory of the MUs yields the following
expression:

xd
i ¼ x0 þ li

vdi ¼ v0

(
ð19Þ

The desired formation pattern of the MUs is determined by

the vector lij 2 R3 ¼ lxij; l
y
ij; l

z
ij

h iT
, where lij denotes the desired

relative position between the i-th MU and the j-th MU. More-

over, the desired relative position lij can be written as:

lij ¼ xd
i � xd

j ¼ li � lj ð20Þ

Remark 3. It is noteworthy that the TSNR cannot effectively
track the virtual leader in the presence of external distur-
bances. To ensure system stability, it becomes necessary to re-

plan the pursuit trajectory when the controller fails to
compensate for the deviation. If the distance between the
center of the TSNR and the virtual leader exceeds a maximum

distance, re-plan the pursuit trajectory:

k x0 � xcenter k P lmax ð21Þ
where xcenter is the position of the center of the TSNR, lmax is

the maximum distance. Subsequently, the position of the vir-
tual leader is reset to the center of the TSNR, and its speed
is set as the average speed of the four MUs. The game then
proceeds by updating the pursuer’s state.

3.2. Finite-time convergent extended state observer

When tracking the generated trajectories, tracking errors inevi-

tably exist due to external and internal disturbances. Before
further designing the controller, the tracking errors and vari-
ous disturbances need to be approximated by the FTCESO.

The position tracking error of the i-th MU is defined as

ei1 ¼ xi � xd
i , and the corresponding speed tracking error is

ei2 ¼ vi � vdi , the relative motion error system can be written as:
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_ei1 ¼ ei2

_ei2 ¼ ei3 þ ui

_ei3 ¼ _G tð Þ

8><>: ð22Þ

where G tð Þ ¼ f xi; við Þ þ di, with assuming k _G tð Þ k 6 Uf.
Based on the error system Eq. (22), a FTCESO can be con-

structed as:

ri1 ¼ ei1 � ni1
_ni1 ¼ ni2 þ k1sig

jþ1ð Þ=2 rið Þ
_ni2 ¼ ni3 þ k2sig

jþ1ð Þ=2 rið Þ þ ui
_ni3 ¼ k3sig

j rið Þ

8>>><>>>: ð23Þ

where ni1, ni2, and ni3 are the estimations of ei1, ei2, and ei3;
j 2 0; 1ð Þ; k1, k2, and k3 are the observer gains;

sigh gð Þ ¼ sign gð Þ gj jh. In addition, define the observation error
of the FTCESO as rij ¼ eij � nij; j 2 1; 2; 3f g. Define

k ri3 k 6 Di1. Then the FTCESO has the following
representation:

_ri1 ¼ ri2 � k1sig
jþ1ð Þ=2 ri1ð Þ

_ri2 ¼ ri3 � k2sig
jþ1ð Þ=2 ri1ð Þ

_ri3 ¼ � _ei3 � k3sig
j ri1ð Þ

8><>: ð24Þ

Remark 4. According to Ref. 20, with the assumption that

k G
:

tð Þ k 6 Uf, the observation error can converge within a

finite time ts, by appropriately choosing the observer gains k1,
k2, and k3. The observation error in one direction

r ¼ sig jþ1ð Þ=2 r1ð Þ; r2; r3
� �T

satisfies the following

inequality:

k r k 6 lUf

rmin Mf g � rmin Nf g ¼ rf; 8t > ts ð25Þ

where rmin Kð Þ represents the minimum singular value of the

matrix K. The constant l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k23 þ 4

q
, the rf is the terminal

error, and the matrices are:

M ¼
k1 �1 0

k2 0 �1

k3 0 0

264
375

N ¼
2k1= jþ 1ð Þ þ k22 þ k23 �k2 �k3

�k2 2 0

�k3 0 2

264
375

8>>>>>>>>><>>>>>>>>>:
ð26Þ

The convergence time ts, depending on the initial error r0,
can be obtained as:

ts 6
2 mþ nð Þ

mn
kmax Nf gV r0ð Þð Þ1=2 ð27Þ

The expressions of a, b, V are:

m ¼ jþ 1ð Þrmin Mf grmin Nf g � 2lUf

n ¼ 2rfrmin Mf grmin Nf g � 2lUf

V ¼ rTNr

8><>: ð28Þ
3.3. Artificial potential field

When tracking the trajectory, the excessive relative distance
between the MUs will create a large force that will cause the
TSNR instability, and too close can lead to collision and

entanglement. In order to guarantee the relative distance
requirements in Eq. (2), two parts of the artificial potential
function are designed as:

U x; xd
� � ¼ XN

i¼1

Ut
i k xi � xd

i k
� �þXN�1

i¼1

Xj>i

j2Xi

Uij k xi � xj k
� �

ð29Þ
where x ¼ xT

1 ; x
T
2 ; � � � ; xT

N

� �T
, and xd ¼ xd T

1 ; xd T
2 ; � � � ;�

xd T
N �T are the stack vectors. The first part Ut

i k xi � xd
i k

� �
is a

gravitational field with the desired trajectory xd
i as the gravita-

tional point. It keeps the i-th MU tracking its own trajectory.

The second part Uij k xi � xj k
� �

is a repulsive field, including

the minimum safety distance ‘0 and maximum allowable dis-

tance Lij þ d two repulsive points. Uij is used to satisfy the rel-

ative distance constraints between the MUs, and maintain the

desired formation.

Ut
i k xi � xd

i k
� � ¼ k xi � xd

i k ð30Þ
It always satisfies Ut

i k xi � xd
i k

� �
> 0, and equal to 0 when

xi ¼ xd
i .

Uij k xi � xj k
� � ¼

1

sin
pkxi�xjk

2 Lijþd�lijð Þ�
p lij� Lijþd�lijð Þð Þ

2 Lijþd�lijð Þ
� � ; lij < k xi � xj k < Lij þ d

1

sin
pkxi�xjk
2 lij�‘0ð Þ�

p‘0

2 lij�‘0ð Þ
� � ; ‘0 < k xi � xj k 6 lij

0; others

8>>>>>>><>>>>>>>:
ð31Þ

If k xi � xd
i k ! ‘0 or k xi � xd

i k ! Lij þ d,
Uij k xi � xj k

� � ! 1. The function Uij k xi � xj k
� �

takes the

local minimum at k xi � xd
i k ¼ lij.

According to Ref. 8, the partial derivatives of the potential

function with respect to xi and xd
i , $xiU x; xdð Þ and $xd

i
U x; xdð Þ

have the following relationships:

XN
i¼1

$xd
i
U x; xd
� � ¼ �

XN
i¼1

$xiU x; xd
� � ð32Þ

Then, the derivative of U x; xdð Þ can be expressed as:

_U x; xdð Þ ¼ PN
i¼1

$xiU
T x; xdð Þ _xi þ

PN
i¼1

$xd
i
UT x; xdð Þ _xd

i

¼ PN
i¼1

$xiU
T x; xdð Þei2

ð33Þ

The above equation will be used to prove the stability of the

controller in Section 3.4.

Remark 5. When the gravitational potential fields

Ut
i k xi � xdi k� �

and repulsive potential fields Uij k xi � xj k
� �

cancel each other, the MU reaches the local minimum point,

and the gradient $xiU x; xd
� �

is zero. Unlike classic scenarios

where obstacles and targets are fixed, the gravitational point xdi
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is momentarily changing in this paper, so the MU can easily

jump out of the local minimum trap.
3.4. Robust adaptive controller

To accurately maintain the configuration of the TSNR, A
robust adaptive controller is proposed based on the FTCESO

and the APF designed before. To design the controller of the
MUs, introduce the following sliding variable:

si ¼ ei2 þ b1iei1 þ a$xiU x; xd
� � ð34Þ

where b1i and a are the positive constants. The derivative of

si is calculated as:

_si ¼ _ei2 þ b1i _ei1 þ a
d rxiU x; xdð Þð Þ

dt
ð35Þ

Assume k a
d $xi

U x;xdð Þð Þ
dt

k 6 Di2. Based on the error mode

Eq. (22), game-generated trajectory Eq. (19), FTCESO Eq.
(24), and nonlinear sliding model function Eq. (34), the forma-
tion controller is designed as:

ui ¼ �ni3 � b1iei2 � b2isi � b3is
r
i � b/isign sið Þ ð36Þ

where b2i and b3i are positive constants, r. And b/i is the
estimate of the upper bound /i, which satisfies
/i P Di1 þ Di2. The adaptive updating law for the robustness

gain b/i is designed as:

_̂/i ¼ hik si k1 ð37Þ
where hi is a positive constant, and k � k1 is the one norm of

the vector. Define the estimation error as e/i ¼ /i � /̂i.

Theorem 1. By employing the formation control scheme in Eq.
(36) and Eq. (37), for systems Eq. (1) with constraints Eq. (2) ,
if the pursuit-evasion game can obtain a feasible trajectory Eq.

(19),and the approximation error of the FTCESO Eq. (24) is
bounded, then the mission of formation control can be
achieved in finite time, i.e.,the MUs can track the desired

formation trajectory with the desired formation pattern in
finite time Tf,and finally capture the target.

Proof. Choose a Lyapunov function candidate as:

V tð Þ ¼ 1

2

XN
i¼1

sTi si þ
1

2

XN
i¼1

1

hi
e/2

i ð38Þ

Substituting Eqs. (22), (24), (35), (36), and (37) into Eq. (38)
yields the following expression:

_V tð Þ ¼ PN
i¼1

sTi _si �
PN
i¼1

1
hi
e/i

_̂/ i

¼ PN
i¼1

sTi _ei2 þ b1i _ei1 þ a
d$xi

U x;xdð Þ
dt

� �
�PN

i¼1

1
hi
e/i

_̂/ i

¼ PN
i¼1

sTi ei3 þ b1iei2 þ a
d$xi

U x;xdð Þ
dt

� ni3 � b1iei2 � /
^

isign sið Þ � b2isi � b3is
r
i

� �
�PN

i¼1

1
hi
e/i

_̂/ i

6
PN
i¼1

sTi Di1 þ Di2 � /
^

isign sið Þ � b2isi � b3is
r
i

� �
�PN

i¼1

1
hi
e/ i

_̂/ i

ð39Þ
The following inequality holds:
sTi Di1 þ Di2ð Þ 6 k sTi Di1 k1 þ k sTi Di2 k1
6 k si k1k Di1 k1 þ k si k1k Di2 k1
6 /ik si k1

ð40Þ

Therefore, Eq. (39) reduces to:

_V tð Þ 6 �
XN
i¼1

sTi b2isi �
XN
i¼1

sTi b3is
r
i ð41Þ

According to Lemma 1, Eq. (41) can be calculated as:

_V tð Þ 6 �kmin b2ð Þ
XN
i¼1

sTi si � kmin b3ð Þ
XN
i¼1

sTi si
� � rþ1ð Þ=2 ð42Þ

where b2 and b3 are diagonal matrices composed of b2i and b3i,
respectively.

Then one has:

_V tð Þ 6 �p
PN
i¼1

Vi � q
PN
i¼1

V
rþ1ð Þ=2
i

6 �pV� qV rþ1ð Þ=2
ð43Þ

where p ¼ kmin b2ð Þ, and q ¼ kmin b3ð Þ. According to Lemma 2
and Eq. (43), when p > 0 and q > 0, the system can achieve
finite-time stability. Theorem 1 is proven. And the convergence
time Tf can be obtained as:

Tf 6 t0 þ 1

p 1� rð Þ=2 ln
pV 1�rð Þ=2 x0ð Þ þ q

q
ð44Þ

Remark 6. The convergence time ts of the FCTESO given by
Eq. (27) must be faster than the convergence time Tf of the

controller in Eq. (44).

Remark 7. It is obvious that V tð Þ is bounded and _V tð Þ 6 0 for

8t P 0, which further indicates that both si and e/i are

bounded. According to the definition of si in Eq. (34), ei1,

ei2, and $xiU x; xdð Þ are bounded. Then the relative distance

constraints Eq. (2) can be guaranteed all the time.

Furthermore, _U x; xdð Þ ¼ PN
i¼1$xiU

T x; xdð Þei2, _U x; xdð Þ is

also bounded. Integrating both sides of Eq. (33) over the time
interval 01½ Þ, one has:Z 1

t¼0

_U x; xd
� �

dt ¼
XN
i¼1

Z 1

t¼0

$xiU x; xd
� �T

ei2

� 	
dt

¼ U x; xd
� �



t¼1 �U x; xd
� �



t¼0

< 1

ð45Þ

Obviously,
R1
t¼0

rxiU x; xdð ÞTei2
� 	

dt exist and bounded, and

lim
t!1

rxiU x; xdð Þ ¼ 0, which indicates that the MUs can main-

tain the desired formation pattern.

Remark 8. Integrating both sides of Eq. (41) over the time
interval 01½ Þ, one has:R1

t¼0

PN
i¼1

sTi b2isi þ
PN
i¼1

sTi b3is
r
i Þ

� �
dt 6 � R1

t¼0
_V tð Þdt

¼ V 0ð Þ � V 1ð Þ
ð46Þ
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Then, si 2 L2, and lim
t!1

si tð Þ ¼ 0. By Eq. (36), the conclusion

can be obtained as:

lim
t!1

ei2 þ b1iei1ð Þ ¼ lim
t!1

si � $xiU x; xd
� �� � ¼ 0 ð47Þ

Therefore, xi ! xd
i and _xi ! _xd

i , which implies the MUs

can track the desired formation trajectory.

3.5. Discussion

Although the pursuit-evasion game in Section 3.1 is also an
optimization process, it is different from the classic coopera-
tive formation control problem, like in Ref. 18. In cooperative
tasks, all agents share a common objective of reaching the

specific target location with the desired formation pattern,
and energy optimization involves minimizing the whole energy
assumption of all agents. Conversely, the players’ objectives

differ in non-cooperative scenarios like the pursuit-evasion
game, as described in Eq. (9). The TSNR aims to catch up with
the target as quickly as possible with the minimum fuel, while

the target seeks to get out of the chase with the minimum fuel,
which is reflected in the cost function Eq. (9) by minimizing it
on one side and maximizing it on the other side.

The energy cost uTpRpup � uTeReue is a significant component

in the cost function. Different from the energy E in Ref. 18 is
the sum of all agents, an increase in the TSNR’s control input
leads to an increase in its own cost function, but an increase in

the target control input leads to a decrease in it. The TSNR
minimizes its own energy cost while maximizing the target’s
fuel consumption, reflecting the adversarial nature of the

pursuit-evasion game.
In addition to energy consumption, relative distance qpe is

also a vital factor to be focused on, qT
pe tfð ÞSqpe tfð Þ and

qT
peQqpe. Unlike in Ref. 18, the time-varying formation func-

tion fi of agent i is given. During the game, both players
change the state, i.e., the relative distance qpe, by changing

their control strategies u. In summary, for non-cooperative
pursuit-evasion game problem, this form of the cost function

Eq. (9) is more suitable for describing the opposite objective.

4. Simulation verification

4.1. Simulation environment

The parameters of the TSNR are shown in Ref. 5. Select a

moment when the TSNR has been released and the initial posi-
tions of the MUs in the orbital frame are shown in Table 1.

The minimum safety distance ‘0 is 2 m, the side length of

the net Lij and the desired position between the MUs k lij k
Table 1 Initial states of MUs and virtual leader.

MU Initial position(m) Initial velocity(m/s)

0 (virtual leader) x0 ¼ 0; 0; 0½ �T v0 ¼ 0; 0; 0½ �T
1 (Aa) x1 ¼ 0; 2; 2½ �T v1 ¼ 0; 0; 0½ �T
2 (Ak) x2 ¼ 0; 2;�2½ �T v2 ¼ 0; 0; 0½ �T
3 (Ka) x3 ¼ 0;�2; 2½ �T v3 ¼ 0; 0; 0½ �T
4 (Kk) x4 ¼ 0;�2;�2½ �T v4 ¼ 0; 0; 0½ �T
are both 5 m, and the maximum elastic elongation is
d ¼ 0:1 m. Set the desired formation pattern as

l1 ¼ 0; 2:5; 2:5½ �T, l2 ¼ 0; 2:5;�2:5½ �T, l3 ¼ 0;�2:5; 2:5½ �T,
l4 ¼ 0;�2:5;�2:5½ �T. The topology graph is also shown in
Ref. 8 with an adjacent matrix G ¼ 0; 1; 1; 0; 1; 0; 0; 1;½
1; 0; 0; 1; 0; 1; 1; 0�. The maximum output of the thruster is 5 N.

For the game theory based trajectory part, assume the

orbital angular velocity x is 7:2722� 105 rad=s. The initial

position and velocity of the target are �1500;�500; 0½ �T, and
�0:1; 0; 0:01½ �T. The maximum thrust magnitudes of the virtual
leader are given by umax ¼ 4 N, which is less than the maxi-

mum output of the MU’s thruster. The finite time horizon is
set as tf ¼ 1000 s. The matrices in the cost function are given
as follows:

Q ¼ I3 0

0 0

� �
Rp ¼ 1� 106I3

Re ¼ 2:5� 106I3

8>>><>>>:
The parameters of the FTCESO are k1 ¼ 100; k2 ¼ 300;

k3 ¼1000. The parameters in controller are selected as
a ¼ 0:001, b1i ¼ 0:25, b2i ¼ 3, b3i ¼ 0:02, r ¼ 0:2, hi ¼ 0:1, for
i ¼ Aa; Ak; Ka; Kk.

To demonstrate the effectiveness of the proposed formation
control scheme, a comparison among three control methods is
made:

(1) Controller 1 incorporates the proportional navigation
guidance law to generate the pursuit trajectory, comple-
mented by the robust adaptive control scheme Eq. (36)

presented in this paper. The target employs the game
method Eq. (18) proposed in this paper to avoid capture.

(2) Controller 2 utilizes the pursuit-evasion game approach

Eq. (18) proposed in this paper, while the formation
control part adopts the algorithm designed in Ref. 8.

(3) Controller 3 is based on the game method Eq. (18) and

adaptive control law Eq. (36) proposed in this paper.

4.2. Criteria for successful capture

The evaluation of the capture process involves the following
five critical variables: (A) The approaching error of the TSNR.
(B) The position, velocity, and control input of the four MUs.

(C) The configuration of the TSNR. (D) The relative distance
between the four MUs. (E) The tension force.

Based on these variables, three criteria for a successful cap-

ture are established as follows: (A) A viable pursuit trajectory
for the TSNR must be generated. (B) Each MU should be cap-
able of tracking the desired trajectory. (C) The stability of the

TSNR must be maintained throughout the capture process.
The first criterion ensures that the target cannot escape from
the TSNR. The second criterion ensures that the controller
can effectively compensate for external disturbances during

the pursuit process. The third criterion prevents the net from
twisting or breaking. When the relative distance between the
four MUs remains at the desired value, the net will maintain

a state of micro-tension, which is the most stable condition.
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4.3. Simulation results

Figs. 4–6 illustrate the trajectory and the configuration of the
TSNR under the action of the three controllers. Three specific
time points have been chosen to reflect the configuration of the

TSNR. The first moment corresponds to the initial deploy-
Fig. 4 Trajectory and configuratio

Fig. 5 Trajectory and configuratio
ment, where the net is fully extended, and the relative distance
between the MUs reaches its maximum. The second moment is
during a maneuvering turn phase of the TSNR. The third

moment represents the smooth-chasing phase. These figures
demonstrate that all three controllers can effectively generate
a trajectory to capture the target, with the TSNR configura-
n of TSNR under Controller 1.

n of TSNR under Controller 2.



Fig. 6 Trajectory and configuration of TSNR under Controller 3.

Fig. 7 Approaching error between TSNR and target.
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tions displayed throughout the capture process. Upon analyz-
ing Fig. 4, it becomes evident that Controller 1 fails to main-

tain the desired configuration, posing a significant threat to
the system’s stability. Conversely, both Controller 2 and Con-
troller 3, which utilize the game method, not only obtain suc-

cessful capture trajectories but also uphold a stable
configuration consistently. Notably, in Fig. 6, the configura-
tion at 11.7 s is more stable under the action of Controller 3

compared to controller 2, owing to the adaptive law proposed
in this paper.

Fig. 7 illustrates the approaching error under the three con-
trollers. It can be seen that the approaching error between the

spacecrafts decreases rapidly. At the time horizon tf, both Con-
trollers 2 and 3 result in an approaching error of 1:9 m, indi-
cating the successful conclusion of the approaching phase

and the capture of the target. However, controller 1 retains
an approaching error of 48 m at tf, implying additional time
to capture the target.

Fig. 8 illustrates the tension force experienced by eight
nodes of the TSNR during the approaching phase. It is evident
that both Controllers 2 and 3, employing the game method,

result in lower tension forces compared to Controller 1. Fur-
thermore, the inclusion of the adaptive term in Controller 3
effectively suppresses vibrations and further reduces the ten-
sion force.

Figs. 9–11 provide a comparison of the position tracking
error, velocity tracking error, and control inputs for the three
controllers, using MU1 (Aa) as an example. Specifically, Fig. 9

(a) and Fig. 10(a) indicate that Controller 1 fails to track the
desired trajectory. This inadequate convergence accuracy leads
to chaotic configurations (as shown in Fig. 4) and excessive

tension force (as displayed in Fig. 8). Fig. 11(a) illustrates
the high vibration of the control input, which is unacceptable
for practical engineering applications. Conversely, by incorpo-

rating the game method to generate a pursuit trajectory, Con-
troller 2 demonstrates improved tolerance and precision, as
evident in Fig. 9(b) and Fig. 10(b). Consequently, this

approach avoids net twisting issues (as shown in Fig. 5) and
reduces tension force (as exhibited in Fig. 8). Moreover, the
control input depicted in Fig. 11(b) exhibits smoother behav-

ior, with a peak at 11.7 s attributed to the APF function. Mov-
ing on to Controller 3, Fig. 9(c) and Fig. 10(c) present the
position and velocity tracking errors. Through effective com-
pensation for disturbances caused by tension force and APF



Fig. 8 Tension force of the node of TSNR. (a)Aa, (b)Ak, (c)Bc, (d)Fb, (e)Ff, (f)Ge, (g)Ka, (h)Kk.
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functions, this controller successfully reduces error peaks,
shortens convergence time, and improves convergence accu-
racy. In Fig. 11(c), the peak of the control input is lower com-
pared to Controller 2.

The relative distances between adjacent MUs during the
approaching phase, with identical initial states, are depicted
in Figs. 12 to 15. It can be observed that the relative distance

is strictly constrained under the three controllers due to the
APF functions during the approaching phase. In the begin-
ning, the distance is less than the predetermined value and

greater than the minimum safety distance. Consequently, the
APF generates a repulsive force that compels the MUs to
maneuver away from each other, and the flexible net quickly
becomes taut. Once the distance reaches the designed value,

the attractive forces generated by the APF, along with the ten-
sion force enacted by the flexible net, affect the MUs. More-
over, when the distance is close to the maximum distance

and exceeds the desired value, the APF induces a repulsive
force to avoid the infringement of the constraints defined in
Eq. (2), which results in the peak of the control input in Figs. 11

(b) and (c). Notably, Controller 1 does not consistently main-
tain the desired relative distance, resulting in extreme tension
force (as demonstrated in Fig. 8) and potential system damage.

On the other hand, Controllers 2 and 3 employ the pursuit-
evasion game method, effectively avoiding distance oscillations
and ensuring stable configurations (as evidenced in Fig. 5 and
Fig. 6). However, due to the derivative of the APF function’s
gradient perturbing the system externally, Controller 2 exhibits
slow convergence time and unsatisfactory convergence accu-
racy. In contrast, Controller 3 incorporates an adaptive term

that compensates for this perturbation, leading to substantial
improvements in convergence speed and precision. Conse-
quently, the distances between adjacent MUs rapidly converge

to the predetermined value, and the connecting net consistently
maintains a state of micro-tension. In summary, Controller 3
proposed in this paper satisfies the three criteria well and out-

performs the other two controllers.

5. Conclusions

This paper proposes a novel strategy to address the problems
of capturing a dynamic target and maintaining a specific con-
figuration for the TSNR. The proposed strategy combines dif-

ferential game theory and formation control to efficiently
accomplish the capture mission. The conclusions are drawn
as follows:

(1) A pursuit-evasion game method was developed to
obtain desired trajectories for approaching the target,
which can evade capture. To ensure the stability of the

TSNR during trajectory tracking, real-time feedback is
introduced.



Fig. 9 Position tracking errors of MU1(Aa). (a) Under action of Controller 1. (b) Under action of Controller 2. (c) Under action of

Controller 3.

Fig. 8 (continued)
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Fig. 10 Velocity tracking errors of MU1(Aa). (a) Under action of Controller 1. (b)Under action of Controller 2. (c)Under action of

Controller 3.

Fig. 11 Control input of MU1(Aa). (a)Under action of Controller 1. (b)Under action of Controller 2. (c)Under action of Controller 3.

Fig. 12 Relative distance between MU1(Aa) and MU2(Ak). Fig. 13 Relative distance between MU1(Aa) and MU3(Ka).
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Fig. 14 Relative distance between MU2(Ak) and MU4(Kk).

Fig. 15 Relative distance between MU3(Ka) and MU4(Kk).
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(2) A formation controller with APF based on FTCESO is
proposed to handle tracking errors and maintain the

TSNR’s configuration in the presence of disturbances.
A new adaptive law is developed to estimate the deriva-
tive of the gradient of the APF functions, thus suppress-
ing complex oscillations. Lyapunov analysis is used to

verify the proposed scheme’s stability and finite-time
convergence.

(3) Numerical simulations demonstrate the effectiveness of

the proposed strategy in capturing a dynamic target
using the TSNR.

Future studies will focus on investigating the non-
cooperative characteristics of the TSNR and performing a
semi-physical ground test to validate the proposed method

and its potential application to on-orbit scenarios.
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