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Abstract

The current studies for Tethered Space Net Robot (TSNR) typically treat the tension force induced by the net as a
disturbance and employ passive suppression for compensation. However, these approaches not only result in excess
fuel consumption but also overlook the intrinsic nature of the net dynamics. When one Maneuverable Unit (MU)
maneuvers, it generates a tension force on the net that is transmitted to other MUs. This force not only affects the
control accuracy of other MUs but also has a positive effect. In this paper, an Active Energy Management Distributed
Formation Control (AEMC) strategy is proposed to reveal this kind of interaction and maximize its advantage. Firstly,
an energy recovery framework is established, allowing each MU can effectively utilize the tension force due to the
net. Specifically, a neural network estimator is designed to capture the hysteresis relationship in which MUs influence
each other by transmitting forces through the net. Furthermore, to achieve the cooperative completion of tasks, a game
based control scheme is proposed to optimize the control input and tension force collectively. Through prediction and
optimization, MUs actively manage their impacts on each other, thereby controlling the influence of tension force
on the tracking errors of others. Finally, numerical simulations are conducted to showcase the effectiveness of the
proposed approach.
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1. Introduction

On-orbit services, such as debris removal and the cap-
ture of noncooperative targets, are emerging as promis- Maneuverable Units (MUs)
ing trends in future space development [1]. Over the Target Satellite
past few decades, various flexible tethered space sys-
tems have been proposed to facilitate capture missions.
These systems, such as the Tethered Space Net (TSN)
[2], Tethered Space Robot (TSR) [3], Tethered Space
Net Robot (TSNR) [4], and other [5], utilize a flexi-
ble tether to connect the capturing device and the tar-
get. Tethered Space Net Robot (TSNR) emerges as an
innovative solution for active space debris capture and
removal, as illustrated in Fig. 1. Its expansive envelope
and straightforward capture method render it an appeal-
ing choice for such tasks. However, control challenges
arise when attempting to capture debris with the flexible
and elastic underactuated net.

Fig. 1. TSNR system.

*Corresponding author at: 127 West Youyi Road, Beilin District,
Xi’an Shaanxi, 710072, China.
Email address: fzhang@nwpu.edu.cn (Fan Zhang)

Preprint submitted to Acta Astronautica September 26, 2024



In recent years, researchers have extensively explored
control challenges associated with TSNR for space de-
bris capture tasks. For example, the study in [6] formu-
lated formation-keeping control strategies, employing
two artificial potential functions to preserve the TSNR’s
configuration while adhering to relative distance con-
straint. Additionally, Zhang et al. [7] introduced a
fuzzy-based adaptive super-twisting sliding mode con-
trol to estimate and suppress the complex oscillations
of the TSNR. Liu et al. [8] designed a capture configu-
ration optimization method and an observer base time-
varying formation tracking control algorithm, consider-
ing contact dynamics with realistic space debris.

However, prior studies have primarily focused on
overarching control objectives, overlooking the impor-
tance of individual subjective initiative. Treating the
extra tension force caused by other MUs as mere per-
turbations result in excess fuel consumption which is
precisous for a spacecraft, and fails to adequately cap-
ture dynamic interactions among MUs. Game theory
serves as a fitting analytical method for addressing in-
teraction formation issues within multi-agent systems.
Jiang et al. [9] introduced the cooperative error into the
cost function to study the consistency of the formation.
Additionally, Li et al. [10] explored a distributed game
strategy for the formation control of multi-spacecraft,
introducing a worst-case Nash strategy against the dis-
turbance defined as a player. The study in [11] inves-
tigated the problem of modular robots cooperating in
handling a large space structure by using the frame-
work of cooperative game, and designed a coordinated
compensatory control mechanism using the principle of
model predictive control, which ensures that it is able
to track the desired optimal handling trajectory. Liu et
al. [12] extended the application of differential graphi-
cal game control to the coupled non-linear dynamics of
the T-MRUAVs system by introducing a sophisticated
framework, capturing the collaborative and competitive
nature among UAVs to achieve efficient and secure sta-
bility control of the system.

Nonetheless, current game theory based methods de-
signed for multi-agent systems are not directly applica-
ble to TSNR. In existing work, the game model typically
has a deterministic form, allowing for a visual depiction
of the effect of each individual in the multi-agent sys-
tem on the game state. However, MUs in TSNR interact
with each other by transferring tension forces through
the net, raising the question of how to describe this im-
plicit and time-delayed relationship. In this work, a neu-
ral network based tension force estimator is proposed to
estimate and predict this complex relationship among
MUs. For treating the tension force as a perturbation,

both the fixed-time [13, 14] or finite-time [15, 16] state
observer can effectively estimate the perturbation, while
sensors or camera can be employed to measure the ex-
ternal force. Recently, machine-learning scheme has
emerged as attractive approaches for modelling com-
plex dynamics or external forces [17, 18, 19, 20], ow-
ing to their learning and fitting ability. However, these
methods often struggle to describe this kind of hystere-
sis relationship between tension force and individual
state.

To address the aforementioned problems, a novel co-
operative game theory based formation control scheme
(AEMC) for TSNR is proposed in this paper. In this
scheme, the tension force of the net is no longer consid-
ered as a mere perturbation. Instead, forces acting on
other MUs generated by one MU’s maneuver are con-
cretely characterized. The advantages of this interac-
tion are further explored and exploited, enhancing for-
mation control capabilities. The main contributions of
this work are outlined as follows:

1. An active energy management framework is estab-
lished to mitigate the negative effects and capitalize
on the positive effects of tension force, which is no
longer compensated for in a blanket manner and
produces excess fuel consumption. Instead, ten-
sion forces are actively managed by each MU.

2. Tension forces are transmitted among MUs
through the net like ocean waves, where these
forces are not only influenced by the current state
but also by the past states. To effectively depict
this kind of hysteresis interaction among MUs, a
Deep Neural Network (DNN) based tension force
estimator is proposed in this paper to estimate and
predict tension force.

3. After obtaining the force interactions among MUs,
a distributed cooperative game theory based con-
trol scheme is designed. Unlike passive compen-
sation formation control methods [7, 8], in this
scheme, through information exchange and gam-
ing, one MU can actively manage the impact of
tension force on the tracking errors of other MUs,
thus being able to cooperate better in the capture
task.

The remainders are stated as follows. Section 2
presents the mission and dynamic model of TSNR. In
Section 3, a novel active energy management formation
control strategy is proposed. In Section 4, the proposed
scheme is validated using numerical simulations and re-
sults. Section 5 concludes this paper.



Fig. 2. Coordinate frames of TSNR system.

2. Problem formuation

2.1. Mission description

This paper focuses on the application of TSNR to
complete an on-orbit debris removal service to capture
space debris or failed satellites. First, the net is folded
and four MUs are clustered together. When a target
is detected, the four MUs carrying the net are ejected
from the platform satellite. Then four MUs manoeuvre
to unfold the net and approach the target, maintaining
an easy-capture configuration. Finally, four MUs drive
the net to envelope the target and complete the capture
mission.

2.2. Dynamic model of TSNR

To describe the movements of TSNR and space de-
bris, the following coordinate frames are first introduced
(as depicted in Fig. 2). The Earth-Centered Inertial
(ECI) frame, denoted by EXYZ, is located at the center
of the Earth. The non-inertial Local Vertical Local Hori-
zontal (LVLH) orbit coordinate frame, denoted by Oxyz,
is located at the target. TSNR only undergoes transla-
tion relative to the target, and the relative distance is
much smaller than the orbital radius. Furthermore, the
body-fixed frame denoted by O,x,y»z, and located at
the center of TSNR, is parallel to the orbital coordinate
frame.

The relative dynamics equation between space debris
and TSNR in inertial frame can be expressed by the fol-
lowing equation:

T Hro

T ()
0
Hrij

rij =——3/ +u,~j+T,~j

where r( and r;; denote the position of space debris and
any net node of TSNR respectively, with ry = ||ro|| and
rij = ||r, j” 4 is the gravitation constant; u;; and T;; rep-
resent control input and tension force on node ij. The
dynamic model of node ij which expresses the relative
motion in LVLH frame can be written as:
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where w is the orbital frequency of the debris; u;; =

[u ”u “u] and T;; = [Tl’; T:/ Tf] . Define the node

T
ij’s state as x;; = [xij, Vi i xl.j, yl.j, zl.j] , and model (2)
can be rearranged as:

Xij = A(ro, w, W)x;j + B(u;; + T;}) 3)

What makes dynamics of TSNR most different from
other space robots is the tension force 7;; generated
by the flexible net. Inside the net, each mesh edge
between two adjacent nodes is simplified as spring-
damping model. Therefore, the tension force of node
ij is calculated as:

ij = Z Tij—kh

kheN;;
. . 4)
_ (%Ali ki + Clij—kh) i Alija 20
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where N;; is the set of nodes connected to node ij; T';j_
is the tension force between node ij and kh; I, and [;;_,,
denote the length of mesh edge and actual length of the
two nodes; Al;j_x, = ljj—n — I is the elongation of mesh
edge; E is Young’s modulus of the net material; A rep-
resents the horizontal area of mesh edge; ¢ is damping
coefficient; 7,- j—kn 18 unit vector from node ij to kh.

Remark 1. TSNR is a underactuated system, which
can only be controlled indirectly by four MUs on the
corner of the net. These MU nodes are noted as MU
1 — 4, and dynamics of MU i can be obtained as:

X = A(ro,w,0)x; + Bu; +T;) (5)

Obviously tension force can have a significant impact
on MUs and configuration of the net, so the objective
of control is to avoid excessive tension forces, and to
maintain microtension for net stabilisation. The control
method will be discussed in the next section.



2.3. Graph theory

In TSNR system, the directed graph G represents
the network structure facilitating information exchange
among MUs. The adjacency matrix A = [ai j] e R,
where a;; > 0 if MU i can directly receive infromation
from its neighbor MU j, and a;; = 0 otherwise. The set
of neighbors of MU i is defined as N;. And the indegree
matrix D = diag(d;) is fromed by d;; = Z;fz , aij. Then
the graph Laplacian matrix is defined as £ = D — A.
In addition, for the problem of trajectory tracking, intro-
duce 8 = diag(by,- - ,b,) € R™", where b; > 0 if MU
i can obtain a desired trajectory.

3. Controller design

In this section, an active energy management dis-
tributed formation tracking control strategy is designed
for TSNR (as depicted in Fig. 3), including two parts:
tension force neural estimator and differential coopera-
tive game based controller. In each time step, the neu-
ral estimator estimates and predicts tension force in real
time based on the states of adjacent MUs. Then MUs
optimize their own objective that contains predicted ten-
sion force, by communicating and gaming with each
other.

3.1. Tension force neural network estimator

According to dynamics of TSNR (4), MU i’s tension
force T; is associated with the nodes near MU i, which
are also affected by their neighbors. Exploring further
out of nodes, it can be found that the four MUSs interact
with each other by transferring forces through the net.
Therefore,T; is caused by the manoeuvres of adjacent
MUs, and can be expressed as:

T, = f(xi,x_j,u;,u_;) (6)

where x_; and u_; are the states and control inputs of
MU i’s neighbors; f is a function that represents map-
ping from state and control to tension force.

This function f is strongly nonlinear, and although an
analytical solution can be obtained by net model (4), in
practice it is unrealistic to obtain the state of each node
to solve it. Meanwhile, the function has a very notice-
able hysteresis. The vibrations caused by one particu-
lar MU will be transmitted to other neighboring MUs
through the net like waves. Thus, the present force T
is related to the past state, and the present state will
produce a new sequence of tension force in the future.
Therefore, the function (6) can be deduced as :

T; (t + NAtlt) = D (X; (tx — NiAtlty) @)

where N, is predict horizon of the estimator;
T;(t + N, Atlty) denotes tension force sequence

T
T T T C X (f —
[Ti,k’Ti,kH’”' ,Ti’kwr_]] ; X; (tx — N, At|ty) represents

T
T i T 1. :
state sequence [Xi,k—N,+ L XN Xi,k] . the state is

defined as X;; = [ka’xTi,k’qu’uTi,k .

Furthermore, due to DNN’s remarkable ability of
function approximation, a DNN parameterized by
weights @ = W', .-, W is raised to approximate the

nolinear and time-delayed function ®:
@ = W W (W' X)) ®)

where ¢ is the ReLU activation function. To estimate
and predict tension force associated with present and
past state, loss function L is formulated as:

L(T:,Ti) = aLe (T; (&), T (1))
+BL, (Ti (t + Nl T: (o + NiArlty))

) ©)
where T is estimate of tension force T;; « and S are
positive hyperparameters. Loss function L (T i T ,») con-
sists of two parts: estimation L, and prediction L,. The
purpose of the first part is to estimate exact tension force
at every time step, having the following form:
_JA=-p|Ti@) -Ti@| Tiw) > Ti @) 10
T - T T: () <T: (1)

where 7 is a positive constant. Because excessive ten-
sion force can lead to net breakage or even system col-
lapse, overestimation of tension force is permissible,
while underestimation is not. Therefore y is set in
(0,0.5) to penalise underestimation.

Next, the second part is aimed to predict the change
in tension force over a period of time. This can be ex-
pressed as:

N;
Ly = ma|[Ti (s + nde) = Ty (e + ndo)]| (1)

n=1

where 77, € (0, 1) is a decay constant. This part of loss
function focuses on forecasting tension force errors over
a period time in the future. Due to the temporal delay
between MUs’ interactions, the current state X;(#;) ex-
erts a lesser influence on the force at next step T';(#;+A4r).
Instead, it exerts a more pronounced effect on the force
at a slightly later time. So the value of 1, depends on
the time.

Theorem 1. A ReLU network can approximate any
function f from F4, with error € € (0,1). F,, is the
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Fig. 3. System overview.

unit ball in Sobolev spaces W"™> ([0, 1]‘1). Thus the ap-
proxiamtion error of the designed DNN estimator (8) is
bounded.

The detailed proof of Theorem 1 is derived in the ap-
pendix.

Finally, based on the predicted force T; obtained from
the proposed estimator (8), MU i’s dynamic can be re-
arranged as:

X = A(rg, w, )% + Bu; + T)) (12)

Define 4; = u; + Ti, predicted dynamic of MU can be
reformulated as:

Xx; = Ax; + Bi; (13)

Remark 2. During the data collection process, multi-
ple trajectories of TSNR are given and the state of each
moment X;(#;) is recorded. Further the actual tension
force T; can be obtained offline by states information
and (4). In order to facilitate the analysis of these data,
the input and output data were normalised. This was
necessary due to the large temporal span of the state, the
numerous dimensions of the state, and the considerable
disparity between position data and velocity ones.

3.2. Cooperative game based formation controller
The objective of each MU is not only to track its own
trajectory, but also to maintain a certain formation scal-

ing, so that the net remains well configured. Define
tracking error ¥; = x; — x¢, where x¢ is the desired cap-
ture trajectory according to [8]. Then, the cooperative
COnsensus error is:

ei= ) aij(% - %))+ bi%; (14)
JEN;
T
Define global error ¥ = [xf,xg, -+, %I, the deriva-

tive of (14) has the following form:

e=((Li+B)oDhx
= Ui+ by @ DE+ Y (1 +by) & 1) %

JEN;
= L,'.';X',' + Z L,-jfvj
JEN;
_ N . d N d
= Li(Ax; + Bit; - &) + ) Lij(Ax; + Bit; - &)
JEN;

(15)
where £; is the i th row vector of the Laplacian matrix
Lie., L;=1[ly, -, 1] Similarly, B; = [bi1,- - , binl.
Li=(;+b;)®Iand L;; = (lij + b,-j) ® I. According
to (15), apparently there is a cooperative relationship
among MUs.

Then, by taking each MU as a game player, consen-
sus error e; as the game state and #; as the control strat-



egy, a n-person cooperative game is established to de-
sign the distributed formation controller for TSNR. The
cost function of each player is formulated as:

Iy

Ji = f (eiTQ,-ei +al R, + ZaJTR,,-a il a6
fo JEN;

where 1) and ¢, are the initial and final time. All weight-
ing matrices are symmetric and constant. And Q; > 0,
R; > 0 and R;; > 0. In order to suppress tracking er-
ror and realize consensus, each MU discovers the opti-
mal control strategy by minimizing its own cost func-
tion (16). To be distributed, the control strategy #; of
MU i only utilizes its individual state information and
that of its neighbors during the gaming process.

Definition 1. (Pareto Optimal Solution)[21]. In a co-
operative game composed by n players, for any two
T
sets of control strategies u* = [u*l‘, e ,u;] and u =
[y, ,u,]", u* is said to dominate u in Pareto sense if
the following conditions hold:
Jiw) < J;(m) forallie{l,2,---n} a7
J;(u*) < J;(u) foratleastonei € {1,2,---n}
u” is the Pareto optimal solution if there is no other strat-
egy dominates u*. The Pareto optimal solution can be
interpreted as a public agreement of all players, where
it is impossible to improve one particular player’s cost
function without causing loss in any other’s. It can be
obtained by minimizing the following combination of
all player’s cost functions:

J = i/lili (18)
i=1

where 4; € (0, 1) is the weight on cost function of player
i,and 37, A = 1.

For the designed game consisting of (15) and (16), in
order to obtain its Pareto optimal solution &*, a model
predict strategy is proposed. Firstly, game model (15)
must be discretised and iterated. At f,, MU’s dynamic
is discretised as:

Xik+1 = ArXix + B (19)

where A; and By are discrete dynamic matrices. Then
discretised cooperative consensu error yields the follow-

ing expression:

i1 = Li(Axip + Byt — xi/m)

~ d
+ Z L,‘j(Akx]',k + Bkuj’k - qukﬂ)

JEN;
S, o)
= AppXig + Bigdiy — 25,
A S A wd
+ D Ay + Bujady = £,
JEN;
where Ai,k = Ll‘Ak, Aij,k = L,‘jAk, and simi-

larly to other matrices. Further, define predict hori-
zon of the solver as N, and iterate the discrete

dynamics (20) in the predict horizon [tk, tk+1v,,—1]-

T T T |7
Define Eijx = [ef,ef, el | U =
at al -k \ as sequences of error and
ik Wike1r " s WeN, -1 q

control strategy, one has:
Ejx = Hyxix+ Wi Ui — XY,
+ Z H jjxji+ WU js = Xy @21

JEN;
=H;xip+ Wiy Ui + Six

where
A=l o (a)]
B, 0
Wi = : P
ANR, By 22
X=[8h o ]
Six = —le‘fk + Z(Hj,kxj,k + WUk — Xik)

JEN;

Secondly, do the same for the cost function, the dis-
crete form and iterative form are:

k+Np,—1
_ T ) ~T p &~ nT R4
Ji= Z € or1Qi€igr1 T Rillig + Zuj,gRUu]»g
g=k JEN;
Jix =EYQ, Eiy + U R, Uiy + Y UL R, U,
ik = L ik ik ik VikY ik Gk ijkY jk

JeN;

(23)

where Q;, = Iy, ® Q;, Ry = Iy, ® R; and R;j; =

Iy, ® R;;. However, the optimal control strategy of sin-

gle MU cannot be solved independently due to the cou-

pling in (22) and (23). In order to achieve distributed

control, further decoupling of cost function is required.
Substituting (22) into (23), one has:



Jik = (xzkHZk + S;'l:k) Qi (Hixxix + Six)
+ U;[:k (Ri,k + W;l:in’kW,"k) U,',k
+2(xLH], + ST) QWU

+ Z UIkRij,kUj,k

JEN;

(24)

MU i can only optimize its individual control strat-
egy, so terms in (24) without U, are omitted. There-
fore, the cooperative game controller can be reformu-
lated as the following quadratic programming (QP)
problem:

. 1
minJ;; = EUEkqi’kU,-,k +pLUi (25)

ik
where

g =2 (Ri,k + Wi]:in,kWi,k)

Diy = ZW,',in,k (Hz,kxz,k + Sl,k)

During the gaming process, MU i solve the above
QP problem in each time #; to achieve Pareto optimal,
based on neighbor MU’s control strategy sequences U ;
and predicted state sequences X;. After obtaining its
own control strategy sequence Uj, the first term #@; is
extracted, and the actual control input is calculated as
w =a; - T

Remark 3. Game model (15) includes the predicted
tension force 7;. By introducing it into dynamics, the
effect of tension force on the game state e; can be fore-
casted. Thus this effect can be reduced by active control.
Unlike perturbation estimation methods, this approach
does not require bounded assumptions about the pertur-
bations themselves and their derivatives, which are gen-
erally unknown and highly conservative.

4. Simulation and results

In this section, numerical simulations are conducted
to demonstrate the performance of the proposed cooper-
ative game theory based formation controller. The simu-
lation environment for TSNR is built based on MuJoCo
[22], which is a high-fidelity open source physics en-
gine considering complex dynamical effects and flexible
constraints. The training data is collected from capture
trajectories with random position of the target in Mu-
JoCo. A total of 1000 trajectories are collected, each
lasting 30 s for 30000 data points.

The orbit radius of space debris and TSNR is
ro = 42164 km. The initial position of target is at xo =
[5,0, O]T, and the initial states of four MUs when leav-
ing the platform are x;(z)) = [-10,0.75,0.75,0,0, ()]T,
x@) = [10,-0.75,0.75,0,0,01%, x3(p) =
[-10,0.75,-0.75,0,0,01" and x4() =
[-10,-0.75,-0.75,0,0, O]T, where the position and
velocity units are m and m/s. Before capture, TSNR
is stored in the platform and folded in a square pattern
with mesh edge [, = 0.5m. Then TSNR is released
and the net is gradually expanded as large as possible
before contact by the motion of four MUs. Two mission
scenarios are considered: (1) Case 1: the target is sta-
tionary and TSNR moves directly to capture it. (2) Case
2: the target is rotating and TSNR moves to align with
the target inertial spindle before capturing. To success-
fully capture the target, the net should close completely
after contact and envelope it, so the terminal condition
of four MUs are x;(¢;) = [5,0.5,0.5,0,0, 017, xy(ty) =
[5,-0.5,0.5,0,0,0]", x3(t;) = [5,0.5,-0.5,0,0,0]"

and x4(t7) = [5,-0.5,-05,0,0, 0]T in Case 1,
and  x(tp) = [3.41,5.43,0.50,0.25,0.43,0]",
x(ty) = [3.91,4.56,0.50,0.25,0.43,0]7,
x3(tyr) = [3,91,4.56,-0.50,0.25,0.43,0]" and

x4(t;) = [3.41,5.43,-0.50,0.25,0.43,0]" in Case 2
respectively. The other detailed parameters of TSNR is
shown in [4].

- = =MUI
- - - MU 2

MU 3
- - =MU4
Center

/]

Fig. 4. Three-dimensional diagram of planned trajectories of four
MUs and their center in Case 1.

The capture trajectories for the two cases planned by
method [8] are depicted in Fig. 4 and Fig. 5. According
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Fig. 5. Three-dimensional diagram of planned trajectories of four
MUs and their center in Case 2.

to the mission description, four MUs in each case need
to open the net, then drive it moving forward, and finally
envelop the target. Case 2 has a more complex trajec-
tory compared to Case 1, as MUs need to manoeuvre to
adjust the configuration of the net for the rotating target.

The envelope capture sequence of TSNR in Case 1 is
illustrated in Fig. 6, depicting the action of the designed
cooperative formation controller. Upon release from the
platform satellite, four MUs progressively move away
to expand the net. As the net reaches its maximum
size, MUs drive it closer to space debris (depicted as
the green cylinder in Fig. 6). It’s evident that in the fi-
nal moments, the net can completely encircle the target,
thereby completing the debris capture mission. Fig. 7
shows the capture process of TSNR in Case 2, where the
target rotation adds considerable difficulty to the capture
task. After fully deploying the flexible net (at 10 s), four
MUs continuously move the position of the flexible net
and adjust the angle of the flexible net to align with the
inertial spindle of the target (10 - 20 s), while maintain-
ing the size of the flying net and approaching the target.
At 30 s, the debris is finally captured by TSNR.

Fig. 8 and Fig. 9 depict tension forces acting on each
MU obtained by the proposed neural network estima-
tor in each case. It is clear that during the approaching
phase (0 — 10s), the tension force acting on each MU
is quite small or even negligible. This phenomenon is
due to the net not being taut enough to generate signif-
icant force. But the manoeuvre of MUs in this phase

will create extra tension forces on each other at a later
time. When the net is fully deployed (10 — 205), ten-
sion force increases substantially, enabling each MU to
interact with others through this force transmission. Af-
ter the net makes contact with debris (at 20s), the net
is no longer taut and the tension force again becomes a
very small value. During the envelope phase, a collision
force is generated. However, the impact of the collision
is not discussed in this paper for simplicity. The higher
forces in Case 2 compared to that in Case 1 are due to
the more complex trajectory of TSNR when catching a
spinning target. The four MUs have to perform turning
manoeuvres as well as adjusting the position and atti-
tude of the net.

To demonstrate the effectiveness of the proposed
method (AEMC), it is compared with two kinds of
force-compensation methods, a Distributed Model Pre-
dict Control (DMPC) scheme and a Sliding Mode Con-
trol (SMC) approach [23]. Taking MU 1 as an example,
the position tracking error curves of three directions un-
der these three algorithms in Case 1 are illustrated in
Fig. 10. It’s evident that the X-direction error under the
proposed method converges the fastest (as shown in Fig.
10 (a)). The other two methods both have a peak at 10,
the moment when the net is fully deployed and there is
a sudden change in tension force (as shown in Fig. 8).
Force-compensation methods only compensate for per-
turbations when they occur, while the proposed energy
management approach can effectively predict, estimate,
and utilize the tension forces in advance.

In the Y and Z directions (as illustrated in Fig. 10
(b) and (c)), there is also a peak at 10 s for both force-
compensation methods, whereas the proposed method
has converged by this time. It’s worth noting that all
three algorithms produce large errors in the Y and Z di-
rections during the approach phase (0—10 s) and enclos-
ing phase (20—30s). The proposed energy management
approach not only has a smaller error but also produces
in a different direction than the other two methods. This
is the difference between energy management and force
compensation. Based on the predicted forces and inter-
actions, MUs communicate and gamble collaboratively
to reach the Pareto Optimal Solution. The game state of
the MUs consists of two parts, one of which is explicitly
embodied in the cost function (16) in the form of coop-
erative consensus error (14), and the other is implicitly
embodied in the optimization variables #@; in the form of
tension force T; acting by other satellites, guaranteeing
that each MU’s strategy is the best response relative to
the strategies of its collaborators.

Fig. 11 compares the performance of the three con-
trollers in Case 2. It can be seen that AEMC performs



=10s

=55
t=20s
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Fig. 7. Envelope capture sequence of TSNR in Case 2.
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much better than the other two algorithms when faced
with complex trajectories. In the flexible net position
and attitude adjustment phase (10 - 20 s), both two
compensation-based methods show large tracking errors
compared to Fig. 10. In contrast, the AEMC proposed
in this paper is still able to limit the error to a quite nar-
row range.

Table. 1. Fuel consumption of TSNR in Case 1.

MU AEMC (N) DMPC(N) SMC (N)
1 35.19 35.44 37.08
2 35.23 35.23 37.21
3 35.13 34.87 37.12
4 35.22 35.44 37.27
Total 140.77 140.98 148.68

Table. 2. Fuel consumption of TSNR in Case 2.

MU AEMC (N) DMPC (N) SMC (N)
1 56.21 55.32 55.78
2 55.16 56.50 56.56
3 56.21 55.23 55.79
4 55.18 55.32 56.56

Total 222,77 223.53 224.71

The fuel consumption caused by each algorithm in
the two space debris capture tasks are given in Table. ]
and Table.2, expressed in terms of the total control in-
put generated. It can be seen that the SMC method
consumes the most and the proposed method consumes
the least, effectively demonstrating the validity of the
energy management approach. And the consumption
of the DMPC method and the proposed method are
very close to each other, which may be because both
algorithms use the concept of prediction-optimization.
However, in conjunction with Fig. 10 and Fig. 11, com-
pared to DMPC, the proposed AEMC method performs
better at almost the same fuel consumption. A portion of
the fuel consumption of the DMPC algorithm is used for
tension force compensation, while the proposed AEMC
approach uses this consumption to improve control per-
formance.

5. Conclusion

This paper proposes a novel strategy to tackle the
challenges associated with capturing space debris and



tracking a specific trajectory for TSNR. The pro-
posed strategy combines principles from both differen-
tial game and machine learning theory, aimed at effi-
ciently completing the capture mission. The conclu-
sions are outlined as follows:

1. A novel active energy management framework
(AEMC) is established to conserve fuel consump-
tion, by actively managing tension forces on the
net and maximizing their benefit to control effec-
tiveness.

2. A DNN based force estimator is developed to de-
pict the intricate time-delayed interactions among
MUs, facilitating the precise estimation and pre-
diction of tension force. And a predictive dynamic
model is introduced according to it.

3. Using cooperative game theory, a formation track-
ing control strategy is proposed to deeply reflect
the relationship among MUs. Each MU optimise
its cost function in a fully distributed manner to
suppress the tracking error and achieve consensus.

4. Numerical simulations demonstrate the effective-
ness of the proposed strategy in the mission of cap-
turing space debris utilizing TSNR.

Appendix: Detailed Proof of Theorem 1

Lemma 1. [24] Forany |x| < M and |y| < M, M is pos-
itive, there is a ReLU network with two input satisfies:
7 (x,y) —xyl < o, 0 € (0,1).

Proof-  Define N as a positive integer, x € [0, 1]¢
and m = (my,my,---my) € {0,1,--- N}, function f
can be expanded to a n — 1 order Taylor polynomial at

x =3
m n
Pu®) = Y ama (x - N) @7
n:|nl<n
where ap, = d"f|x_4, and |am,n| <, (x— %)n =

HZ=1 (X — %). Then, approximate f by a sum-product

combination fi:
fi= D, Qu®Pu®)

mel0,1, N}

(28)

where O, (x) = ]_[k . q(3N (xk - "—)) and
> Om (x) = 1. g (x) has the following form:

L, [xf <1,
q(x) =10, 2 < |x, (29)
—lx, 1<|x<2

12

With the property of functions, |g(xX)|, = [Om(¥)le = 1,
and supp Qm(x) C {x : |x - %| < %}, the error be-
tween f; and f can be calculated as:

If = files ~ Pu(x))
< Z f(®) = Pu0)
w7 <k
<2¢ " max  1f(x) = Pu(x)| (30)

2ddn n

< e (N) J?ﬁlx €SSyc[0, 1) |d f(x)|
24g" (1"

S —
n! \N

Next, design a ReL.U neural network f, to approxi-
mate f;. Combine (27) and (28), fl can be expanded

ingly, f2 is glven as:

fo=

Z AmnK(x)

me(0,...,.N}Y n:lnl<n

€19}

Based on Lemmal, K(x) is the approximation of the

product Q,,(x) (x - %)n in fj. It can be obtained by the
application of 7:

K(x) = n(gBNx1 —m1),n(gB3Nxz — my),

m m (32)
o - Wl,ﬂ(xz - Wz,m»--))
Note that |g(3Nx; — my)| < 1 and |x; — 2| < 1. Re-

peatedly applying Lemmal, every multlphcatlon in (32)
is bounded by M = d + n, while there are d factors of
q(3BNx; — my) and at most n — 1 factors of x; — % in
term Q,(x) (x - %)n Then the error between f, and f;
is calculated as:

If2 = fil

i (K6) = ) (6= ) )‘

N4 n:|n|<n

> ama (K0 = 0at) (6= ) )

Z

m:xesupp Oy, n:|n|<n

<2 max

m:xesupp Oy,
n: \n|<n

<24d"(d + n)o

> [k - enr(x- %)

(33)



Finally, defining N

2dgn 2
< (30) and (33) leads to the conclusion:

(L’E)_l/n-‘ and o =

2FT g (d+n)’

2= flo < 12— filo +1fi = flo

€ (34)
+-=¢€

<
2
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Highlights

® A novel approach for the application of Tethered Space Net Robot (TSNR) in
space debris removal is investigated.

® An active energy management framework is established to mitigate the negative
effects and capitalize on the positive effects of tension force.

® A Deep Neural Network (DNN) based estimator is proposed to estimate and
predict tension force among Maneuverable Units (MUs).

® A distributed cooperative game theory based control scheme is designed. An MU

can actively manage the effects of others.
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