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ct

rrent studies for Tethered Space Net Robot (TSNR) typically treat the tension force induced by the net as
nce and employ passive suppression for compensation. However, these approaches not only result in exce

nsumption but also overlook the intrinsic nature of the net dynamics. When one Maneuverable Unit (M
ers, it generates a tension force on the net that is transmitted to other MUs. This force not only affects t
accuracy of other MUs but also has a positive effect. In this paper, an Active Energy Management Distribut
ion Control (AEMC) strategy is proposed to reveal this kind of interaction and maximize its advantage. First
gy recovery framework is established, allowing each MU can effectively utilize the tension force due to t
ecifically, a neural network estimator is designed to capture the hysteresis relationship in which MUs influen
her by transmitting forces through the net. Furthermore, to achieve the cooperative completion of tasks, a gam
ontrol scheme is proposed to optimize the control input and tension force collectively. Through prediction a
ation, MUs actively manage their impacts on each other, thereby controlling the influence of tension for
tracking errors of others. Finally, numerical simulations are conducted to showcase the effectiveness of t
d approach.

ds: Tethered Space Net Robot, Formation control, Differential cooperative games, Learning-based control

oduction

rbit services, such as debris removal and the cap-
noncooperative targets, are emerging as promis-
ds in future space development [1]. Over the

decades, various flexible tethered space sys-
ve been proposed to facilitate capture missions.
ystems, such as the Tethered Space Net (TSN)
hered Space Robot (TSR) [3], Tethered Space
bot (TSNR) [4], and other [5], utilize a flexi-
er to connect the capturing device and the tar-
thered Space Net Robot (TSNR) emerges as an
ive solution for active space debris capture and
l, as illustrated in Fig. 1. Its expansive envelope
ightforward capture method render it an appeal-
ice for such tasks. However, control challenges
hen attempting to capture debris with the flexible
stic underactuated net.

esponding author at: 127 West Youyi Road, Beilin District,
aanxi, 710072, China.
il address: fzhang@nwpu.edu.cn (Fan Zhang)

Fig. 1. TSNR system.
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ent years, researchers have extensively explored
challenges associated with TSNR for space de-
ture tasks. For example, the study in [6] formu-
rmation-keeping control strategies, employing
ficial potential functions to preserve the TSNR’s
ration while adhering to relative distance con-

Additionally, Zhang et al. [7] introduced a
ased adaptive super-twisting sliding mode con-
estimate and suppress the complex oscillations
SNR. Liu et al. [8] designed a capture configu-
ptimization method and an observer base time-
formation tracking control algorithm, consider-

tact dynamics with realistic space debris.
ever, prior studies have primarily focused on
hing control objectives, overlooking the impor-
f individual subjective initiative. Treating the
nsion force caused by other MUs as mere per-
ns result in excess fuel consumption which is
us for a spacecraft, and fails to adequately cap-
namic interactions among MUs. Game theory
s a fitting analytical method for addressing in-

n formation issues within multi-agent systems.
al. [9] introduced the cooperative error into the
ction to study the consistency of the formation.
nally, Li et al. [10] explored a distributed game
for the formation control of multi-spacecraft,

cing a worst-case Nash strategy against the dis-
e defined as a player. The study in [11] inves-
the problem of modular robots cooperating in
g a large space structure by using the frame-
f cooperative game, and designed a coordinated
satory control mechanism using the principle of

predictive control, which ensures that it is able
the desired optimal handling trajectory. Liu et
extended the application of differential graphi-
e control to the coupled non-linear dynamics of
RUAVs system by introducing a sophisticated

ork, capturing the collaborative and competitive
mong UAVs to achieve efficient and secure sta-
ntrol of the system.
theless, current game theory based methods de-

for multi-agent systems are not directly applica-
SNR. In existing work, the game model typically
terministic form, allowing for a visual depiction
ffect of each individual in the multi-agent sys-
the game state. However, MUs in TSNR interact
ch other by transferring tension forces through
raising the question of how to describe this im-
d time-delayed relationship. In this work, a neu-
ork based tension force estimator is proposed to

e and predict this complex relationship among
For treating the tension force as a perturbation,

both the fixed-time [13, 14] or finite-time [15, 16] sta
observer can effectively estimate the perturbation, wh
sensors or camera can be employed to measure the e
ternal force. Recently, machine-learning scheme h
emerged as attractive approaches for modelling co
plex dynamics or external forces [17, 18, 19, 20], o
ing to their learning and fitting ability. However, the
methods often struggle to describe this kind of hyste
sis relationship between tension force and individu
state.

To address the aforementioned problems, a novel c
operative game theory based formation control schem
(AEMC) for TSNR is proposed in this paper. In th
scheme, the tension force of the net is no longer cons
ered as a mere perturbation. Instead, forces acting
other MUs generated by one MU’s maneuver are co
cretely characterized. The advantages of this intera
tion are further explored and exploited, enhancing fo
mation control capabilities. The main contributions
this work are outlined as follows:

1. An active energy management framework is esta
lished to mitigate the negative effects and capitali
on the positive effects of tension force, which is
longer compensated for in a blanket manner a
produces excess fuel consumption. Instead, te
sion forces are actively managed by each MU.

2. Tension forces are transmitted among M
through the net like ocean waves, where the
forces are not only influenced by the current sta
but also by the past states. To effectively dep
this kind of hysteresis interaction among MUs
Deep Neural Network (DNN) based tension for
estimator is proposed in this paper to estimate a
predict tension force.

3. After obtaining the force interactions among MU
a distributed cooperative game theory based co
trol scheme is designed. Unlike passive compe
sation formation control methods [7, 8], in th
scheme, through information exchange and ga
ing, one MU can actively manage the impact
tension force on the tracking errors of other MU
thus being able to cooperate better in the captu
task.

The remainders are stated as follows. Section
presents the mission and dynamic model of TSNR.
Section 3, a novel active energy management formati
control strategy is proposed. In Section 4, the propos
scheme is validated using numerical simulations and
sults. Section 5 concludes this paper.
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Fig. 2. Coordinate frames of TSNR system.

lem formuation

ission description

paper focuses on the application of TSNR to
te an on-orbit debris removal service to capture
ebris or failed satellites. First, the net is folded
r MUs are clustered together. When a target
ted, the four MUs carrying the net are ejected
e platform satellite. Then four MUs manoeuvre
ld the net and approach the target, maintaining
-capture configuration. Finally, four MUs drive
to envelope the target and complete the capture
.

namic model of TSNR

escribe the movements of TSNR and space de-
following coordinate frames are first introduced

icted in Fig. 2). The Earth-Centered Inertial
rame, denoted by EXYZ, is located at the center
arth. The non-inertial Local Vertical Local Hori-
LVLH) orbit coordinate frame, denoted by Oxyz,
ed at the target. TSNR only undergoes transla-
ative to the target, and the relative distance is
maller than the orbital radius. Furthermore, the
xed frame denoted by Obxbybzb and located at
ter of TSNR, is parallel to the orbital coordinate

elative dynamics equation between space debris
NR in inertial frame can be expressed by the fol-
equation:


r̈0 = − µr0

r3
0

r̈i j = − µri j

r3
i j
+ ui j + Ti j

(1)

where r0 and ri j denote the position of space debris a
any net node of TSNR respectively, with r0 = ∥r0∥ a
ri j =

∥∥∥ri j

∥∥∥; µ is the gravitation constant; ui j and Ti j re
resent control input and tension force on node i j. T
dynamic model of node i j which expresses the relati
motion in LVLH frame can be written as:



ẍi j − 2ωẏi j − ω2xi j − ω̇yi j =
2µxi j

r3
0
+ ux

i j + T x
i j

ÿi j + 2ωẋi j − ω2yi j + ω̇xi j = − µyi j

r3
0
+ uy

i j + T y
i j

z̈i j = − µzi j

r3
0
+ uz

i j + T z
i j

(

where ω is the orbital frequency of the debris; ui j[
ux

i j, u
y
i j, u

z
i j

]T
and Ti j =

[
T x

i j,T
y
i j,T

z
i j

]T
. Define the no

i j’s state as xi j =
[
xi j, yi j, zi j, ẋi j, ẏi j, żi j

]T
, and model (

can be rearranged as:

ẋi j = A(r0, ω, ω̇)xi j + B(ui j + Ti j) (

What makes dynamics of TSNR most different fro
other space robots is the tension force Ti j generat
by the flexible net. Inside the net, each mesh ed
between two adjacent nodes is simplified as sprin
damping model. Therefore, the tension force of no
i j is calculated as:

Ti j =
∑

kh∈Ni j

Ti j−kh

=



(
EA
ln
∆li j−kh + cl̇i j−kh

)
l̂i j−kh ∆li j−kh ⩾ 0

0 ∆li j−kh < 0

(

where Ni j is the set of nodes connected to node i j; Ti j−
is the tension force between node i j and kh; ln and li j−
denote the length of mesh edge and actual length of t
two nodes; ∆li j−kh = li j−kh − ln is the elongation of me
edge; E is Young’s modulus of the net material; A re
resents the horizontal area of mesh edge; c is dampi
coefficient; l̂i j−kh is unit vector from node i j to kh.

Remark 1. TSNR is a underactuated system, whi
can only be controlled indirectly by four MUs on t
corner of the net. These MU nodes are noted as M
1 − 4, and dynamics of MU i can be obtained as:

ẋi = A(r0, ω, ω̇)xi + B(ui + Ti) (

Obviously tension force can have a significant impa
on MUs and configuration of the net, so the objecti
of control is to avoid excessive tension forces, and
maintain microtension for net stabilisation. The cont
method will be discussed in the next section.

3
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aph theory
SNR system, the directed graph G represents

ork structure facilitating information exchange
MUs. The adjacency matrix A =

[
ai j

]
∈ Rn×n,

i j > 0 if MU i can directly receive infromation
neighbor MU j, and ai j = 0 otherwise. The set
bors of MU i is defined as Ni. And the indegree
D = diag(dii) is fromed by dii =

∑n
j=1 ai j. Then

h Laplacian matrix is defined as L = D −A.
ion, for the problem of trajectory tracking, intro-
= diag(b1, · · · , bn) ∈ Rn×n, where bi > 0 if MU
tain a desired trajectory.

troller design

is section, an active energy management dis-
formation tracking control strategy is designed
R (as depicted in Fig. 3), including two parts:
force neural estimator and differential coopera-
e based controller. In each time step, the neu-
ator estimates and predicts tension force in real

sed on the states of adjacent MUs. Then MUs
e their own objective that contains predicted ten-
rce, by communicating and gaming with each

nsion force neural network estimator
rding to dynamics of TSNR (4), MU i’s tension
i is associated with the nodes near MU i, which

affected by their neighbors. Exploring further
odes, it can be found that the four MUs interact
ch other by transferring forces through the net.
re,Ti is caused by the manoeuvres of adjacent
nd can be expressed as:

Ti = f (xi, x−i,ui,u−i) (6)

x−i and u−i are the states and control inputs of
neighbors; f is a function that represents map-
m state and control to tension force.
function f is strongly nonlinear, and although an
al solution can be obtained by net model (4), in
it is unrealistic to obtain the state of each node
it. Meanwhile, the function has a very notice-

steresis. The vibrations caused by one particu-
will be transmitted to other neighboring MUs
the net like waves. Thus, the present force Ti,k

ed to the past state, and the present state will
a new sequence of tension force in the future.

re, the function (6) can be deduced as :

Ti (tk + Nt∆t|tk) = Φ (Xi (tk − Nt∆t|tk)) (7)

where Nt is predict horizon of the estimat
Ti (tk + Nt∆t|tk) denotes tension force sequen[
T T

i,k,T
T
i,k+1, · · · ,T T

i,k+Nt−1

]T
; Xi (tk − Nt∆t|tk) represen

state sequence
[
XT

i,k−Nt+1, · · · , XT
i,k−1, X

T
i,k

]T
; the state

defined as Xi,k =
[
xT

i,k, x
T
−i,k,u

T
i,k,u

T
−i,k

]T
.

Furthermore, due to DNN’s remarkable ability
function approximation, a DNN parameterized
weights θ = W1, · · · ,WL+1 is raised to approximate t
nolinear and time-delayed function Φ:

Φ = WL+1ϕ(WL(· · · ϕ(W1Xi) · · · )) (

where ϕ is the ReLU activation function. To estima
and predict tension force associated with present a
past state, loss function L is formulated as:

L
(
Ti, T̂i

)
= αLe

(
Ti (tk) , T̂i (tk)

)

+ βLp

(
Ti (tk + Nt∆t|tk) , T̂i (tk + Nt∆t|tk)

)

(
where T̂i is estimate of tension force Ti; α and β a
positive hyperparameters. Loss function L

(
Ti, T̂i

)
co

sists of two parts: estimation Le and prediction Lp. T
purpose of the first part is to estimate exact tension for
at every time step, having the following form:

Le =


(1 − γ)

∥∥∥Ti (tk) − T̂i (tk)
∥∥∥ Ti (tk) > T̂i (tk)

γ
∥∥∥Ti (tk) − T̂i (tk)

∥∥∥ Ti (tk) < T̂i (tk)
(1

where γ is a positive constant. Because excessive te
sion force can lead to net breakage or even system c
lapse, overestimation of tension force is permissib
while underestimation is not. Therefore γ is set
(0, 0.5) to penalise underestimation.

Next, the second part is aimed to predict the chan
in tension force over a period of time. This can be e
pressed as:

Lp =

Nt∑

n=1

ηn

∥∥∥Ti (tk + n∆t) − T̂i (tk + n∆t)
∥∥∥ (1

where ηn ∈ (0, 1) is a decay constant. This part of lo
function focuses on forecasting tension force errors ov
a period time in the future. Due to the temporal del
between MUs’ interactions, the current state Xi(tk) e
erts a lesser influence on the force at next step Ti(tk+∆
Instead, it exerts a more pronounced effect on the for
at a slightly later time. So the value of ηn depends
the time.

Theorem 1. A ReLU network can approximate a
function f from Fd,n with error ϵ ∈ (0, 1). Fd,n is t

4
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Fig. 3. System overview.

l in Sobolev spacesWn,∞ (
[0, 1]d

)
. Thus the ap-

tion error of the designed DNN estimator (8) is
d.
etailed proof of Theorem 1 is derived in the ap-

ly, based on the predicted force T̂i obtained from
posed estimator (8), MU i’s dynamic can be re-
d as:

ẋi = A(r0, ω, ω̇)x̂i + B(ui + T̂i) (12)

ûi = ui + T̂i, predicted dynamic of MU can be
lated as:

ẋi = Axi + Bûi (13)

k 2. During the data collection process, multi-
ctories of TSNR are given and the state of each

t Xi(tk) is recorded. Further the actual tension
i can be obtained offline by states information
. In order to facilitate the analysis of these data,
ut and output data were normalised. This was
ry due to the large temporal span of the state, the
us dimensions of the state, and the considerable
y between position data and velocity ones.

operative game based formation controller
bjective of each MU is not only to track its own

ry, but also to maintain a certain formation scal-

ing, so that the net remains well configured. Defi
tracking error x̃i = xi − xd

i , where xd
i is the desired ca

ture trajectory according to [8]. Then, the cooperati
consensus error is:

ei =
∑

j∈Ni

ai j

(
x̃i − x̃ j

)
+ bi x̃i (1

Define global error x̃ =
[
x̃T

1 , x̃
T
2 , · · · , x̃T

n

]T
, the deriv

tive of (14) has the following form:

ėi = ((Li +Bi) ⊗ I) ˙̃x

= ((lii + bii) ⊗ I) ˙̃xi +
∑

j∈Ni

((
li j + bi j

)
⊗ I

)
˙̃x j

= Li ˙̃xi +
∑

j∈Ni

Li j ˙̃x j

= Li(Axi + Bûi − ẋd
i ) +

∑

j∈Ni

Li j(Ax j + Bû j − ẋd
j )

(1
where Li is the i th row vector of the Laplacian mat
L, i.e.,Li = [li1, · · · , lin]. Similarly,Bi = [bi1, · · · , bi

Li = (lii + bii) ⊗ I and Li j =
(
li j + bi j

)
⊗ I. Accordi

to (15), apparently there is a cooperative relationsh
among MUs.

Then, by taking each MU as a game player, conse
sus error ei as the game state and ûi as the control str

5
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-person cooperative game is established to de-
distributed formation controller for TSNR. The
ction of each player is formulated as:

t f∫

t0

e
T
i Qiei + ûT

i Riûi +
∑

j∈Ni

ûT
j Ri jû j

dt (16)

0 and t f are the initial and final time. All weight-
rices are symmetric and constant. And Qi > 0,
and Ri j ⩾ 0. In order to suppress tracking er-
realize consensus, each MU discovers the opti-
trol strategy by minimizing its own cost func-
). To be distributed, the control strategy ûi of
nly utilizes its individual state information and
its neighbors during the gaming process.

ion 1. (Pareto Optimal Solution)[21]. In a co-
e game composed by n players, for any two
control strategies u∗ =

[
u∗1, · · · ,u∗n

]T
and u =

,un]T, u∗ is said to dominate u in Pareto sense if
owing conditions hold:

∗) ⩽ Ji (u) for all i ∈ {1, 2, · · · n}
∗) < Ji (u) for at least one i ∈ {1, 2, · · · n} (17)

Pareto optimal solution if there is no other strat-
inates u∗. The Pareto optimal solution can be

ted as a public agreement of all players, where
possible to improve one particular player’s cost
n without causing loss in any other’s. It can be
d by minimizing the following combination of
er’s cost functions:

J =
n∑

i=1

λiJi (18)

i ∈ (0, 1) is the weight on cost function of player
n
i=1 λi = 1.

he designed game consisting of (15) and (16), in
obtain its Pareto optimal solution û∗, a model

strategy is proposed. Firstly, game model (15)
discretised and iterated. At tk, MU’s dynamic

etised as:

xi,k+1 = Ak xi,k + Bkûi,k (19)

Ak and Bk are discrete dynamic matrices. Then
sed cooperative consensu error yields the follow-

ing expression:

ei,k+1 = Li(Ak xi,k + Bkûi,k − xd
i,k+1)

+
∑

j∈Ni

Li j(Ak x j,k + Bkû j,k − xd
j,k+1)

= Âi,k xi,k + B̂i,kûi,k − x̂d
i,k+1

+
∑

j∈Ni

(Âi j,k x j,k + B̂i j,kû j,k − x̂d
i j,k+1)

(2

where Âi,k = Li Ak, Âi j,k = Li j Ak, and sim
larly to other matrices. Further, define predict ho
zon of the solver as Np and iterate the discre
dynamics (20) in the predict horizon

[
tk, tk+Np−

Define Ei,k =
[
eT

i,k+1, e
T
i,k+2, · · · , eT

k+Np

]T
Ui,k[

ûT
i,k, û

T
i,k+1, · · · , ûT

k+Np−1

]T
as sequences of error a

control strategy, one has:

Ei,k = Hi,k xi,k +Wi,kUi,k − Xd
i,k

+
∑

j∈Ni

H j,k x j,k +W j,kU j,k − Xd
j,k

= Hi,k xi,k +Wi,kUi,k + Si,k

(2

where

Hi,k =

[
ÂT

i,k · · ·
(
ÂNp

i,k

)T]T

Wi,k =



B̂i,k · · · 0
...

. . .
...

ÂNp−1
i,k B̂i,k · · · B̂i,k



Xd
i,k =

[
x̂T

i,k · · · x̂T
i,k+Np

]T

Si,k = −Xd
i,k +

∑

j∈Ni

(H j,k x j,k +W j,kU j,k − Xd
j,k)

(2

Secondly, do the same for the cost function, the d
crete form and iterative form are:

Ji =

k+Np−1∑

g=k

e
T
i,g+1Qiei,g+1 + ûT

i,gRiûi,g +
∑

j∈Ni

ûT
j,gRi jû j

Ji,k = ET
i,kQi,k Ei,k + UT

i,k Ri,kUi,k +
∑

j∈Ni

UT
j,k Ri j,kU j,k

(2
where Qi,k = INp ⊗ Qi, Ri,k = INp ⊗ Ri and Ri j,k

INp ⊗ Ri j. However, the optimal control strategy of s
gle MU cannot be solved independently due to the co
pling in (22) and (23). In order to achieve distribut
control, further decoupling of cost function is require
Substituting (22) into (23), one has:

6
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,k =
(
xT

i,k HT
i,k + ST

i,k

)
Qi,k

(
Hi,k xi,k + Si,k

)

+ UT
i,k

(
Ri,k +WT

i,kQi,kWi,k

)
Ui,k

+ 2
(
xT

i,k HT
i,k + ST

i,k

)
Qi,kWi,kUi,k

+
∑

j∈Ni

UT
j,k Ri j,kU j,k

(24)

i can only optimize its individual control strat-
terms in (24) without Ui,k are omitted. There-
e cooperative game controller can be reformu-
s the following quadratic programming (QP)
:

min
Ui,k

Ji,k =
1
2

UT
i,k qi,kUi,k + pT

i,kUi,k (25)

e

qi,k = 2
(
Ri,k +WT

i,kQi,kWi,k

)

pi,k = 2WT
i,kQi,k

(
Hi,k xi,k + Si,k

) (26)

ng the gaming process, MU i solve the above
blem in each time tk to achieve Pareto optimal,
n neighbor MU’s control strategy sequences U j

dicted state sequences X j. After obtaining its
ntrol strategy sequence Ui, the first term û∗i is
d, and the actual control input is calculated as
− T̂i.

k 3. Game model (15) includes the predicted
force T̂i. By introducing it into dynamics, the
f tension force on the game state ei can be fore-
Thus this effect can be reduced by active control.
perturbation estimation methods, this approach
t require bounded assumptions about the pertur-
themselves and their derivatives, which are gen-
nknown and highly conservative.

ulation and results

is section, numerical simulations are conducted
nstrate the performance of the proposed cooper-
me theory based formation controller. The simu-
nvironment for TSNR is built based on MuJoCo
hich is a high-fidelity open source physics en-
nsidering complex dynamical effects and flexible
ints. The training data is collected from capture
ries with random position of the target in Mu-
A total of 1000 trajectories are collected, each
30 s for 30000 data points.

The orbit radius of space debris and TSNR
r0 = 42164 km. The initial position of target is at x0
[5, 0, 0]T, and the initial states of four MUs when lea
ing the platform are x1(t0) = [−10, 0.75, 0.75, 0, 0, 0
x2(t0) = [−10,−0.75,0.75,0,0,0]T, x3(t0)
[−10,0.75,−0.75,0,0,0]T and x4(t0)
[−10,−0.75,−0.75, 0, 0, 0]T, where the position a
velocity units are m and m/s. Before capture, TSN
is stored in the platform and folded in a square patte
with mesh edge lm = 0.5 m. Then TSNR is releas
and the net is gradually expanded as large as possib
before contact by the motion of four MUs. Two missi
scenarios are considered: (1) Case 1: the target is s
tionary and TSNR moves directly to capture it. (2) Ca
2: the target is rotating and TSNR moves to align w
the target inertial spindle before capturing. To succe
fully capture the target, the net should close complete
after contact and envelope it, so the terminal conditi
of four MUs are x1(t f ) = [5, 0.5, 0.5, 0, 0, 0]T, x2(t f )
[5,−0.5, 0.5, 0, 0, 0]T, x3(t f ) = [5, 0.5,−0.5, 0, 0, 0
and x4(t f ) = [5,−0.5,−0.5, 0, 0, 0]T in Case
and x1(t f ) = [3.41, 5.43, 0.50, 0.25, 0.43, 0
x2(t f ) = [3.91, 4.56, 0.50, 0.25, 0.43, 0
x3(t f ) = [3, 91, 4.56,−0.50, 0.25, 0.43, 0]T a
x4(t f ) = [3.41, 5.43,−0.50, 0.25, 0.43, 0]T in Case
respectively. The other detailed parameters of TSNR
shown in [4].

Fig. 4. Three-dimensional diagram of planned trajectories of f
MUs and their center in Case 1.

The capture trajectories for the two cases planned
method [8] are depicted in Fig. 4 and Fig. 5. Accordi

7
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Three-dimensional diagram of planned trajectories of four
their center in Case 2.

ission description, four MUs in each case need
the net, then drive it moving forward, and finally
the target. Case 2 has a more complex trajec-
pared to Case 1, as MUs need to manoeuvre to

he configuration of the net for the rotating target.
nvelope capture sequence of TSNR in Case 1 is
ed in Fig. 6, depicting the action of the designed
tive formation controller. Upon release from the

satellite, four MUs progressively move away
nd the net. As the net reaches its maximum
Us drive it closer to space debris (depicted as
n cylinder in Fig. 6). It’s evident that in the fi-
ents, the net can completely encircle the target,
completing the debris capture mission. Fig. 7

he capture process of TSNR in Case 2, where the
tation adds considerable difficulty to the capture

fter fully deploying the flexible net (at 10 s), four
ntinuously move the position of the flexible net

ust the angle of the flexible net to align with the
spindle of the target (10 - 20 s), while maintain-
size of the flying net and approaching the target.
, the debris is finally captured by TSNR.
8 and Fig. 9 depict tension forces acting on each
tained by the proposed neural network estima-
ach case. It is clear that during the approaching
0 − 10 s), the tension force acting on each MU
small or even negligible. This phenomenon is

he net not being taut enough to generate signif-
rce. But the manoeuvre of MUs in this phase

will create extra tension forces on each other at a la
time. When the net is fully deployed (10 − 20 s), te
sion force increases substantially, enabling each MU
interact with others through this force transmission. A
ter the net makes contact with debris (at 20 s), the n
is no longer taut and the tension force again become
very small value. During the envelope phase, a collisi
force is generated. However, the impact of the collisi
is not discussed in this paper for simplicity. The high
forces in Case 2 compared to that in Case 1 are due
the more complex trajectory of TSNR when catching
spinning target. The four MUs have to perform turni
manoeuvres as well as adjusting the position and at
tude of the net.

To demonstrate the effectiveness of the propos
method (AEMC), it is compared with two kinds
force-compensation methods, a Distributed Model P
dict Control (DMPC) scheme and a Sliding Mode Co
trol (SMC) approach [23]. Taking MU 1 as an examp
the position tracking error curves of three directions u
der these three algorithms in Case 1 are illustrated
Fig. 10. It’s evident that the X-direction error under t
proposed method converges the fastest (as shown in F
10 (a)). The other two methods both have a peak at 10
the moment when the net is fully deployed and there
a sudden change in tension force (as shown in Fig.
Force-compensation methods only compensate for p
turbations when they occur, while the proposed ener
management approach can effectively predict, estima
and utilize the tension forces in advance.

In the Y and Z directions (as illustrated in Fig.
(b) and (c)), there is also a peak at 10 s for both forc
compensation methods, whereas the proposed meth
has converged by this time. It’s worth noting that
three algorithms produce large errors in the Y and Z
rections during the approach phase (0−10 s) and enclo
ing phase (20−30 s). The proposed energy manageme
approach not only has a smaller error but also produc
in a different direction than the other two methods. Th
is the difference between energy management and for
compensation. Based on the predicted forces and int
actions, MUs communicate and gamble collaborative
to reach the Pareto Optimal Solution. The game state
the MUs consists of two parts, one of which is explici
embodied in the cost function (16) in the form of coo
erative consensus error (14), and the other is implici
embodied in the optimization variables ûi in the form
tension force Ti acting by other satellites, guaranteei
that each MU’s strategy is the best response relative
the strategies of its collaborators.

Fig. 11 compares the performance of the three co
trollers in Case 2. It can be seen that AEMC perform

8
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Fig. 6. Envelope capture sequence of TSNR in Case 1.

Fig. 7. Envelope capture sequence of TSNR in Case 2.

9



Journal Pre-proof

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
��
��


�

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
�	
��


�

Fig. 8. Pr
MU 2. (c

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
��
��


�

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
�	
��


�

Fig. 9. Pr
MU 2. (c

on.
Jo
ur

na
l P

re
-p

ro
of� �� �� 	�

�����
���

� �� �� 	�
�����

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
��
��


�

���

� �� �� 	�
�����
���

� �� �� 	�
�����

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
�

��


�

���

����������� ����������� �����������

edicted tension forces of four MUs in Case 1. (a) MU 1. (b)
) MU 3. (d) MU 4.

� �� �� 	�
�����
���

� �� �� 	�
�����

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
��
��


�

���

� �� �� 	�
�����
���

� �� �� 	�
�����

����

����

���

���

���

��
��
��
��
��
��
��
��
��

�
�

��


�

���

����������� ����������� �����������

edicted tension forces of four MUs in Case 2. (a) MU 1. (b)
) MU 3. (d) MU 4.

� � �� �� �� �� 	�
 ����

�����

�����

�����

����

����

����

����

�
��

���
� 

��
��

��
�

���

� � �� �� �� �� 	�
 ����

�����

�����

�����

����

����

����

��
��

��
� 

��
��

��
�

���

� � �� �� �� �� 	�
 ����

�����

�����

�����

����

����

����

��
��

��
� 

��
��

��
�

���

� 
 �
�����

����

����


 �� ��
�����

����

����

�������� ���� ���

Fig. 10. Position tracking errors of MU 1 in Case 1. (a) X-directi
(b) Y-direction. (c) Z-direction.

10



Journal Pre-proof

�

�

��
��
���
��
��
��
��
�

�

�

�

��
��
��
��
��
��
��
�

�

�

�

��
��
��
��
��
��
��
�

Fig. 11.
(b) Y-dire

ed
on
o
rs
ed
ar-

)

)

in
.1

in-
od
es
he
on
re
th
n.

m-
s

of
or
C

er-

he
nd
Jo

ur
na

l P
re

-p
ro

of

� � �� �� �� �� 	�
�����

����

����

����

����

����

����

����

���

� � �� �� �� �� 	�
�����

����

����

����

����

����

����

���

� � �� �� �� �� 	�
�����

����

����

����

����

����

����

���

� 

�����

����

����

� �� ��
�����

����

����

�������� ���
 ��


Position tracking errors of MU 1 in Case 2. (a) X-direction.
ction. (c) Z-direction.

much better than the other two algorithms when fac
with complex trajectories. In the flexible net positi
and attitude adjustment phase (10 - 20 s), both tw
compensation-based methods show large tracking erro
compared to Fig. 10. In contrast, the AEMC propos
in this paper is still able to limit the error to a quite n
row range.

Table. 1. Fuel consumption of TSNR in Case 1.

MU AEMC (N) DMPC (N) SMC (N

1 35.19 35.44 37.08
2 35.23 35.23 37.21
3 35.13 34.87 37.12
4 35.22 35.44 37.27

Total 140.77 140.98 148.68

Table. 2. Fuel consumption of TSNR in Case 2.

MU AEMC (N) DMPC (N) SMC (N

1 56.21 55.32 55.78
2 55.16 56.50 56.56
3 56.21 55.23 55.79
4 55.18 55.32 56.56

Total 222.77 223.53 224.71

The fuel consumption caused by each algorithm
the two space debris capture tasks are given in Table
and Table.2, expressed in terms of the total control
put generated. It can be seen that the SMC meth
consumes the most and the proposed method consum
the least, effectively demonstrating the validity of t
energy management approach. And the consumpti
of the DMPC method and the proposed method a
very close to each other, which may be because bo
algorithms use the concept of prediction-optimizatio
However, in conjunction with Fig. 10 and Fig. 11, co
pared to DMPC, the proposed AEMC method perform
better at almost the same fuel consumption. A portion
the fuel consumption of the DMPC algorithm is used f
tension force compensation, while the proposed AEM
approach uses this consumption to improve control p
formance.

5. Conclusion

This paper proposes a novel strategy to tackle t
challenges associated with capturing space debris a

11
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a specific trajectory for TSNR. The pro-
trategy combines principles from both differen-
e and machine learning theory, aimed at effi-
completing the capture mission. The conclu-
e outlined as follows:

novel active energy management framework
EMC) is established to conserve fuel consump-
n, by actively managing tension forces on the
t and maximizing their benefit to control effec-
eness.
DNN based force estimator is developed to de-
t the intricate time-delayed interactions among

Us, facilitating the precise estimation and pre-
tion of tension force. And a predictive dynamic
del is introduced according to it.
ing cooperative game theory, a formation track-

control strategy is proposed to deeply reflect
relationship among MUs. Each MU optimise
cost function in a fully distributed manner to

ppress the tracking error and achieve consensus.
merical simulations demonstrate the effective-

ss of the proposed strategy in the mission of cap-
ing space debris utilizing TSNR.

ix: Detailed Proof of Theorem 1

1. [24] For any |x| ⩽ M and |y| ⩽ M, M is pos-
ere is a ReLU network with two input satisfies:
− xy| ⩽ σ, σ ∈ (0, 1).

f: Define N as a positive integer, x ∈ [0, 1]d

= (m1,m2, · · ·md) ∈ {0, 1, · · · ,N}d, function f
expanded to a n − 1 order Taylor polynomial at

Pm(x) =
∑

n:|n|<n

am,n

(
x − m

N

)n
(27)

am,n =
dn f
n! |x= m

N
, and

∣∣∣am,n

∣∣∣ ⩽ 1,
(
x − m

N

)n
=

k − mk
N ). Then, approximate f by a sum-product

ation f1:

f1 =
∑

m∈{0,1,··· ,N}d
Qm(x)Pm(x) (28)

Qm (x) =
∏d

k=1 q
(
3N

(
xk − mk

N

))
and

x) ≡ 1. q (x) has the following form:

q(x) =



1, |x| < 1,
0, 2 < |x|,
2 − |x|, 1 ≤ |x| ≤ 2

(29)

With the property of functions, |q(x)|∞ = |Qm(x)|∞ =
and supp Qm(x) ⊂

{
x :

∣∣∣xk − mk
N

∣∣∣ < 1
N

}
, the error b

tween f1 and f can be calculated as:

| f − f1|∞ =
∣∣∣∣∣∣∣
∑

m
Qm(x) ( f (x) − Pm(x))

∣∣∣∣∣∣∣
≤

∑

m:|xk− mk
N |< 1

N

| f (x) − Pm(x)|

≤ 2d max
m:|xk− mk

N |< 1
N

| f (x) − Pm(x)|

≤ 2ddn

n!

(
1
N

)n

max
n:|n|=n

essx∈[0,1]d

∣∣∣dn f (x)
∣∣∣

≤ 2ddn

n!

(
1
N

)n

(3

Next, design a ReLU neural network f2 to appro
mate f1. Combine (27) and (28), f1 can be expand
as

∑
m∈{0,...,N}d

∑
n:|n|<n am,nQm(x)

(
x − m

N

)n
. Correspon

ingly, f2 is given as:

f2 =
∑

m∈{0,...,N}d

∑

n:|n|<n

am,nK(x) (3

Based on Lemma1, K(x) is the approximation of t
product Qm(x)

(
x − m

N

)n
in f1. It can be obtained by t

application of η:

K(x) = η(q(3Nx1 − m1), η(q(3Nx2 − m2),

· · · , η(x1 − m1

N
, η(x2 − m2

N
, · · · )) · · · )) (3

Note that |q(3Nxk − mk)| ⩽ 1 and
∣∣∣xk − mk

N

∣∣∣ ⩽ 1. R
peatedly applying Lemma1, every multiplication in (3
is bounded by M = d + n, while there are d factors
q(3Nxk − mk) and at most n − 1 factors of xk − mk

N

term Qm(x)
(
x − m

N

)n
. Then the error between f2 and

is calculated as:

| f2 − f1|∞

=

∣∣∣∣∣∣∣∣

∑

m∈{0,...,N]d

∑

n:|n|<n

am,n

(
K(x) − Qm(x)

(
x − m

N

)n)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∑

m:x∈supp Qm

∑

n:|n|<n

am,n

(
K(x) − Qm(x)

(
x − m

N

)n)
∣∣∣∣∣∣∣∣

≤ 2d max
m:x∈supp Qm

∑

n:|n|<n

∣∣∣∣∣K(x) − Qm(x)
(
x − m

N

)n∣∣∣∣∣

≤ 2ddn(d + n)σ
(3
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A novel approach for the application of Tethered Space Net Robot (TSNR) in

space debris removal is investigated.

An active energy management framework is established to mitigate the negative

effects and capitalize on the positive effects of tension force.

A Deep Neural  Network (DNN) based estimator  is  proposed to  estimate  and

predict tension force among Maneuverable Units (MUs).

A distributed cooperative game theory based control scheme is designed. An MU

can actively manage the effects of others.
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