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Abstract—This work focuses on the problem of collision avoid-
ance with space debris for large-scale deployment of tethered
space robot. To this end, a general scheme that contains offline
training and online execution is presented for safe deployment of
tethered space robot. Specifically, inspired by contraction theory,
a feedback controller is learned from data to guarantee the
superior tracking performance in the offline phase. Furthermore,
the “tube” where state of tethered space robot would stay within
is optimized simultaneously. In the online execution phase, when
the space debris are detected, the motion planner generates
nominal trajectory by considering safety constraints. Then, in
the presence of disturbances, the feedback controller learned
offline tracks this nominal trajectory safely without collisions.
The proposed scheme allows for the comprehensive utilization
of prior knowledge for designing the tracking controller in the
offline phase, thereby enhancing the online tracking performance.
Finally, the numerical simulations demonstrate effectiveness of
the proposed framework.

Index Terms—Tethered Space Robot,
Learning-Based Control, Collision Avoidance.

Tethered System,

I. INTRODUCTION

The tethered space robot has been widely used for artificial
gravity in space, asteroid exploration and other space missions
due to its advantages of strong flexibility, low cost and large-
scale transportability [1]-[3]. However, the space environment
around the Earth is becoming increasingly populated by the
space debris. And the population of space debris has reached
a critical density in Earth orbits, which significantly threats
the safe operations of spacecraft [4], [5]. Colliding with these
space debris would cause extensive damage on the spacecraft.
More seriously, collisions with space debris would generate
more debris, leading to a chain reaction. Furthermore, when
deploying the tethered space robot on a large scale, there is
a high possibility that tethered space robot will collide with
space debris and colliding with space debris would present a
potentially fatal issue for the deployment mission. Thus, the
safety of deployment for tethered space robot is an imperative
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problem expected to be studied for collision avoidance and
space debris mitigation.

The task of collision avoidance for spacecraft often contains
two parts. One part is the motion planner which has been re-
ported in literature [6]—[8]. Considering the safety constraints,
the motion planner can generate a nominal reference trajectory
online or offline. Many existed schemes for motion planning
could be modified slightly to be suitable for the collision
avoidance mission of tethered space robot. The other part is the
tracking controller, which tracks the any feasible reference tra-
jectory convergently in the presence of disturbances. Although
many studies focus on the stable deployment problem [9]—-[16]
for tethered space robot, there are a few studies taking the
tracking tasks into consideration. Therefore, robust tracking
controller design is salient for the safe deployment of tethered
space robot.

The contraction theory is a tool for analyzing the nonlinear
dynamical system by studying the exponential stability of any
two neighbor trajectories [17]. One can design a tracking
controller without a specific reference trajectory under the
contraction theory framework. The control contraction metric
(CCM) [18] synthesis provides a general scheme for designing
the tracking controller of nonlinear system by solving a convex
optimization problem. The sum-of-squares (SOS) program-
ming has been widely used for solving the convex optimization
problem related CCM [19]-[21]. As the neural networks have
remarkable ability for approximating the nonlinear functions
from data, many learning-based schemes are raised for finding
a valid CCM and associated tracking controller [22]-[26]
recently. These works parameterize the metric or controller by
neural networks and train them with contraction constraints
without solving convex optimization problem. In this sense,
the learning-based approaches provide an attractive pattern for
finding a valid metric and tracking controller.

Main challenges and motivations: The collision avoidance
with space debris has remained a focal point of space research,
especially for large-scale deployment of tethered space robot.
As shown in the subsequent section, the collision avoidance
problem of tethered space robot is more complicated than other
tasks due to the existence of space tether, which engenders
more difficulties for the safe deployment. However, a few
studies focus collision avoidance problem for tethered space
robot. The tracking controller is a crucial component in a col-
lision avoidance task. Compared to other schemes, the CCM
synthesis discussed above delivers a more general pipeline
for designing tracking controller. However, the CCM tracking
controller is usually designed by minimizing the geodesic
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Fig. 1. The illustration of proposed scheme which contains two parts. The first part is learning metric M (x, 05) and tracking controller u(z, z*, u*, 6,,)
offline with known dynamics. And the second part is tracking the reference trajectory generated from path planner considering the safety constraints with

learned metric and tracking controller online.

online, which is not straightforward in many cases. And this
optimization-based implementation may not be able to run on
the on-board computer of spacecraft in real-time. Thus, some
of learning-based schemes [22], [25], [26] parameterize the
metric and controller by neural networks together and jointly
learn them from data offline. The learned tracking controller
is used to track reference trajectory online without further
computation of solving optimization problem. However, in
these works, the upper bound of distance between trajectories
of closed-loop perturbed system and unperturbed system is
decided by tuning parameters manually offline, which may be
suboptimal and time-consuming. The performance of tracking
controller obtained in this way may also not be satisfactory.

Accordingly, a general scheme containing offline training
part and online execution part is proposed for deploying
tethered space robot to the destination while keep avoiding
colliding with space debris. Inspired by contraction theory,
a learning-based approach is developed to jointly learn the
feedback controller and metric in the offline phase. Moreover,
the size of “tube” where the state of tethered space robot would
stay within is also optimized offline simultaneously by adding
a term to the loss function. In the online phase, considering
safety constraints, an optimization-based formulation is given
to generate a reference trajectory. And the learned feedback
controller will track this reference trajectory robustly online.
Apart from tracking the reference trajectory with learned
feedback controller directly, a receding-horizon scheme where
the reference trajectory is re-generated by considering the local
information to reduce tracking cost is also discussed in this
work.

Contributions:

1) A general scheme containing offline training part and

online execution part shown in Fig. 1 is proposed for
safe deployment of tethered space robot in the presence
of disturbances.

2) Inspired by CCM [18], [22], a learning-based approach
is developed for finding a valid metric and tracking
controller offline simultaneously. The learned tracking
controller is used to track nominal trajectory online with-
out additional computation of solving convex problem.
Further, a regulation term is considered in loss function
to optimize the size of “tube”.

3) An optimization-based formulation and collision avoid-
ance constraints for safe deployment of tethered space
robot are derived to generate nominal motion plans that
can be executed safely online.

4) An online path planner scheme in the receding-horizon
manner is presented to reduce tracking cost by re-
planning the reference trajectory with the local infor-
mation.

The remainder of this paper is arranged as follows. Section
I derives the dynamical equation of tethered space robot
and gives a brief introduction of contraction theory. Section
IIT presents the proposed scheme which contains the pattern
of learning robust tracking controller and motion planning
algorithm. And the theoretical guarantee of learned tracking
controller is also given in this section. Section IV illustrates the
simulation results of proposed scheme. Section V concludes
this paper and discusses some possibilities for further work.

Notation: Denote the set of symmetric matrices in R™*"
by S,, and S;7°, S=0 represent the set of symmetric positive
definite and semi-positive definite matrices. Given a matrix A,
let A= A+ AT. The 7,X represents the tangent space of X
at x € X. Denote the maximum and minimum singular values
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of matrix A by 5(A) and g(A), respectively. The ||z| 4 =
/2T Ay represents the weighted form for matrix A € S;°.
| - || = is the Frobenius norm.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Dynamics of Deploying Tethered Space Robot

The platform, tethered space robot (TSR) and space tether
constitute the tethered system, which is depicted in Fig. 2.
The EXY Z is the inertial frame, where F is the center of
the Earth. The barycenter of tethered system is denoted as
O. The Oxyz is the body frame of tethered system, and the
direction of axis Ox is tangential to the motion of tethered
system and axis Oz points toward the center of the Earth
E. The Oxoys2zo is the body frame of space tether. The
angle generated by axis Oy and axis Oz, are defined as
in-plane angle ¢ and out-plane angle 3, respectively. Before
deriving the dynamics of deploying tethered space robot, some
assumptions are required.

Assumption 1. The platform and tethered space robot are
mass points. The mass of space tether is neglectable. The orbit
of tethered system is circular. The space tether is straight and
inelastic during deployment.

Assuming that Fj, and F, are the force applied to the
platform and tethered space robot, m,, and m,. are the mass of
platform and tethered space robot, 7, and 7, are the position
vector of platform and tethered space robot described in the
inertial frame, 7" is the tension of space tether (I" > 0), F'
represents the thrust of tethered space robot. Based on the
Newton’s second law and above assumptions, the dynamics
of deployment of tethered space robot can be described by

F, F,

- —— =Qap —ar (D

my My

where the a, and a, are acceleration of the platform and
tethered space robot represented in the inertial frame. The a,,
and a, can be represented by

_ TR % T rop
ap=——57—+—7—
7] [Tl myp [Topl @)
JUR T ro F
ar =———5 + — +
|'I“r| |rr| my |ror| my

where 7,, represents the position vector of platform relative
to the barycenter of tethered system O and 7, has similar
definition. The transformation matrix C' from frame Ozxyz to
frame Oxoy225 is described by

cos o 0 —sina
C = |sinasinf cosf cosasinf 3)
sinacos8 —sinf8 cosacosf

The total length of space tether, the distance between
barycenter of tethered system and the platform, the distance
between barycenter of tethered system and tethered space
robot, are denoted by [,l, and l,, respectively. The vector

Platform

Space Tether

Fig. 2. The definition of tethered system.

Tp, Ty, Top and T, can be represented in the Oxay222 frame
by

’l"p =T + Tpo = C [0 0 —R]T —+ [O 0 —lp]T (4)
r,=ro+71,,=C[0 0 —R]"+[0 0 —I]"
where R is the radius of orbit. The term 7,/ |7op|, Tor/|Tor|
and F in (2) can be represented in the frame Oxsys25 by

Top

=0,0,1]7, 22 = [0,0,—1)", F = [Fy, Fy, F5]"

" 7or]
&)
As l, < R,l, < R, the term |r,|~2 and |r,|~2 of (2) could
be approximated as

‘Top‘

1 l
lrp| ™3 &= — (1 — 32 cos ) cos B)

~ R? R
v, |73 = i(1—|—i’>l—rcos19cosﬂ) ©
T R3 R
Combining the (2)-(6), one can obtain
F, F,
— - — =ap—a,
my My
3Q%sin ¥ cos ¥ cos B — £ (7

= —3021sin 5 cos B cos? 9 — 5—2
—3021 cos® ) cos? B + Q2 + % — %
where m = mpm,/(m, + m,) and Q is the orbit angular
velocity. According to the relationship of rotational complex

motion of rigid body, the acceleration of platform relative to
tethered space robot a,, is described by

—0"cos Bl + 2 (¥ — Q) (sin BBl — I cos 3)
18" 4 28’1 + (¢ — Q) sin  cos Bl
1"+ (9 — Q) cos? Bl + 1872

apr =

®)

where a,, = a, — a, and ()’ represents the derivation with
respect to time.

As the tension based control would be applied to the

tethered space robot next, the component of thrust along the
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tether direction is assumed to be equal to zero for redundancy,
i.e., F3 = 0. Combining the (7) and (8), the dimensionless
dynamics equation of tethered space robot is given directly as

9 =20 +1)[Btanf — %] —3sinvcos ¥ + ug

£ =¢[B% + (U +1)%cos? B + 3cos?Wcos? B — 1] + us

3= _2§B - [(19 +1)% + 3cos®d]sin Bcos B +uy  (9)

and
€ = l/ltotala T=Qt
v &K 1T 1 B
= Qe cos 3 m/u2 T eLm T e my

where [ and [, are instantaneous and total length of space
tether, & € (0,1] is the tether deployme.nt ratio, 7 is the
dimensionless form of time ¢ and the dot () in (9) represents
the derivation with respect to the dimensionless time 7.

For the in-plane deployment (3 = (8 = 0) of tethered space
robot, the dynamics can be written as

@&=f(x)+Bu+d (10)

where 21 = ¥, 20 = & — 1, z3 :19, Z4 :é, r =
[21, 22, 23, 24] T, w = [u1,us]T and d represents the bounded
disturbances, with

3
Z4
flx) = =225 (23 4+ 1) — 3sinz cos 21

(22 +1) [(23 +1)° +3cos? 2, — 1}

B {0 0 1 0] B
0 0 01
where z € X = {x e R"| - 1< 2 <0}, ueld :={uc
R™|ug <0}, n =4, m = 2.

The execution of collision avoidance usually rely on the
thrusters which are attached to tethered space robot. Con-
sequently, the derivation of above dynamics considers the
thrust produced by thrusters. Note that collision avoidance is
active maneuver, which differs from the passive deployment
of tethered space robot.

(1)

B. Control Contraction Metrics

The working principle of contraction theory [17] is to
analyze the incremental exponential stability (IES) of a system
by investigating the evolution of infinitesimal distance between
any two neighboring trajectories. Brief introductions of con-
traction theory are stated as follows.

For an autonomous system & = f(x),x € X C R", we
consider two neighboring trajectories and denote the infinites-
imal (virtual) displacement between them by 8, € 7,X. The
dynamics of §, is given by
of
ox
Hence, the dynamics of the squared distance 63@ is derived
by

8, = Oy 12)

d of
—676, =267 24, 13
dt * T Ox (3)

If the symmetrical part of the Jacobian 0 f /O« is uniformly
negative definite, which can be described by
MN>oveex, 2 < A1 (14)
Then, the squared distance 826, is convergent to zero expo-
nentially at rate 2\. Thus, any of trajectories would converge
to a common trajectory. This kind of system is defined to be
contracting and ) is called as the contracting rate.

The above observation can be generalized by introducing a
control metric M (z) : X — S.;°, which is a smooth function
and is a mapping from X to the set of uniformly positive
definite symmetric matrices. If the Riemann squared length
[17]

V(x,8,) =6, M(x)é, (15)

satisfies

4V (@,8,) < —20\V (@, 8,),Va € X,¥6, € TLX

m (16)

for some positive constant A, then the system is contracting
at rate \. The reverse also holds, which could be stated as
follows. Any contracting system admits a contraction metric
M (x) and a positive constant A > 0 such that $V (z,,) <
0,V € X,Vd, € T, X.

The above analysis could be extended to the systems with
control input, which introduces the concept of control contrac-
tion metric (CCM) synthesis. The CCM synthesis analyzes the
IES properties of closed-loop system with designed controller.
Now consider a control-affine nonlinear system

= f(x)+ B(x)u+d 17)
where € €¢ X CR", u ey CR™", andd € D C R"
are state, control input and bounded disturbances, respectively.
X,U and D are compact sets. It is assumed that the f and
B are smooth functions in their domains, the control input of
nonlinear system is piece-wise continuous function, and (17)
holds with right derivative at discontinuous points.

The variational dynamical equation of (17) ignoring the
disturbances is given by

0, = A(xz,u)d, + B(x)d, (18)
where 8, € T, X, 8, € T, A= 9L 457" Dhigy,; by is
the 4 th column of B(x) and w; is i th component of w. This
work adopts the definition of CCM as follows [20].

Definition 1. If there exists a uniformly bounded metric
M(x), ie., ol < M(x) < @l, and a differential controller
0y : ToX — Tould, such that V(x,d,) < 0,V € X,Vd, €
T.X. Then the metric M (x) is referred as a CCM of the
system.

Given a feedback controller u(t) = k(x(t)) + v(t), if the
closed-loop system is contracting with rate A and a metric
M (x) for arbitrary continuous signal v(t), then

V(x,d,) < —2\V(x,d;) (19)
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holds for € X, 4, € T,X \ {0}. The above inequality (19)
can be derived as
. d
Vx,d,) = — JEM x)0,
20 = g o M 20)
= 61 [M + M (A + BK)|(x)d, < —2\0] M (x)d,
oM

where M = " S¥

could be equivalent to

z, K = g—’:}. The above inequality
M+ M(A+ BEK)+2\M <0 @1

where € X, 4§, € T, X\ {0}. According to the Definition 1,
if one could find the controller w and metric M (x) satisfying
condition (21), then the system is contracting and M (x) is a
valid CCM. Expanding V (z, 8,) further, it gives

V(w.0,) = 3 (0T M(@)3,)

=070y M + M (5L + BK)
+ (06, M + M) (k; + v7)]8,

i=1

(22)

The above inequality holds for arbitrary continuous signal v (t)
for a contracting system. Thus, it is required that

Op M + M =0,Ve e X,i=1,..,m (23)
holds. Then (19) can be written as
oT[0sM + M (% + BK) +2) M8, <0 (24)

where @ € X,d, € T, X \ {0}. Furthermore, if the system
is naturally contracting in directions orthogonal to the span
of the control inputs, i.e., 63MB = 0, the inequality (21)
reduces to

o —

oT[0F M + ML 1+ 2)M5, <0 (25)

where € X, 9, € T,X \ {0}. The above condition could be
written as

s M + ML +22M <0 (26)

Both condition (21) and conditions (23), (26) are sufficient
for searching a valid CCM. But the latter is stronger than
former. This means that the conditions (23), (26) can provide
more precise optimization guidance for searching a valid CCM
than condition (21).

Lemma 1. If a uniformly bounded metric M () satisfies the
condition (21) or conditions (23) and (26), then the metric
M (z) is a CCM for the system & = f(x) + B(x)u and the
contracting rate is \.

Consider a feedback controller u = k(x, x*) + u* satisfies
that v = w* when = z* and a reference trajectory
(z*,w*) which is a valid trajectory of the closed-loop system.
A contracting system has the property that any of trajectories
would converge to a common trajectory, which can be stated
as follows.

Proposition 1. If the condition (21) or conditions (23) and
(26) are satisfied with a uniformly bounded metric M (x),

ie, al = M(x) < @l and a feedback tracking controller
u = k(x,x*) + u*, then the displacement between actual
trajectory and nominal trajectory of unperturbed close-loop
system exponentially converges to zero, i.e.

(t) — 2" (8)]| < \/ge”llw(o) -z (0)] @D

where )\ is the contracting rate and the constant /a/« is the
overshoot constant.

When the closed-loop system is perturbed with disturbances,
there is a similar conclusion for the contracting system.

Definition 2. Define  : R" — 28" as a mapping s.t.
x € Q(x) and Q(x) is a closed and bounded set for every x.
For a nonlinear system & = f(x,u), 2(-) is a robust control
invariant (RCI) mapping if there exists a tracking controller
k(z*,x) s.t. x(ty) € Q(x*(to)), then for any realizations of
disturbance d(t), x(t) € Q(x*(¢)) for all ¢y <t < t;.

Lemma 2. [20] If there is a uniformly bounded metric
M(x), i.e., mI < M(x) < mlI and a feedback controller
u = k(x, ")+ u* satisfying the conditions (23) and (26), or
condition (21). Then, for the same reference trajectory, the
distance between actual trajectory of perturbed closed-loop
dynamics and nominal trajectory of unperturbed dynamics is
bounded. And

O(z*) = {:c cX: ||m—m*||2M§E2} (28)

is an ellipsoid robust control invariant (RCI) set of closed-
loop system stabilized with w = k(x,x*) + u* , where ¢ =
SUpLex 7(O(x))d/\, M (z) = O(z)TO(x) and M (x) > M
holds for all € X.

Note that the RCI set (28) is not the minimal RCI set
of closed-loop system stabilized with CCM controller. The
ellipsoid RCI (28) is an outer approximation of minimal RCI
mapping which has been derived in [20]. Furthermore, accord-
ing to Lemma 2, the RCI set §2(-) is derived on condition that
CCM conditions hold. Therefore, if the MPC is utilized for
producing the nominal trajectory, the set X & €) should be the
tightened state constraint in the MPC problem to guarantee
that the CCM conditions hold.

C. Problem Formulation

Differing from other deployment missions that have studied
in the literature, this work focuses on the safety of deploying
tethered space robot. The safe deployment mission for tethered
space robot is formulated as follows.

The problem of safely deploying: Considering in-plane
dynamics (10) of TSR under Assumption 1, the objective is to
design a control law that can deploy the tethered space robot
from a initial position &y = [0,0,& —1,&]7 € X to the final
position z; = [0,0,0,0]7 € X while keeping avoid colliding
with space debris along the path.

III. MAIN RESULTS

To solve the safety problem for TSR deployment mission,
we propose a general scheme that contains a collision-free path
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planner and a robust tracking controller. The proposed scheme
is depicted in Fig. 1. The path planner adopts the optimization-
based approach considering the safety constraints to produce
a reference trajectory. Then a learning-based CCM controller
is designed for tracking the planned trajectory in the presence
of disturbances.

A. Learning Robust Tracking Controller Using Control Con-
traction Metrics

As shown in Lemma 1, if one could find a uniformly
bounded metric M (x) confirming the condition (21) for a
nonlinear system, a feedback controller v can be built for
tracking any given reference trajectory exponentially. In this
work, a learning-based scheme is proposed to jointly learn the
control contraction metric and the feedback controller with
known dynamics. The metric and controller are represented
by two deep neural networks

M (x;06) = Wit a(Wh(a(Wiy - ) (29)
k(x,x*;0,) = WEHa(WE( . .a(W}! - (x,2%)))) (30)

where a is the nonlinear activation function and 0,; =
Wiy, Wt 0, = WL .., WEH! are the parameters of
associated neural networks. The controller u(x, *, u*;0,,) is
given by

u(x, ", u";0,) =u*" + k(x,z*;0,) 31

The architecture of corporately learning control contraction
metric and feedback controller is depicted in the Fig. 3.
The objective is to find the metric M (x) and controller u
satisfying the condition (21). Thus, the control contraction
metric risk is given as

Lccm(eMveu) = E
(z,@*,u*)~p(D)

g(_¢(w7 w*a U‘*; 9M7 eu) - U)

(32)
where ¢(x,x*,u*;0y,0,) represents the LHS (Left-Hand
Side) of (21), E means the value of expectation, p(D) denotes
the uniform distribution over the sampling data space D :=
X x X x U, o is a small positive constant and the auxiliary
function G is penalized for non-positive definiteness, i.e.,
G(A) =0 if and only if A > 0. Therefore, Leem(6pr,6.) =0
indicates that the condition (21) holds over the domain with
the control contraction metric M (x;60;;) and the controller
u(x, z*,u*;0,).

However, it may lead to poor performance learning the
metric and feedback controller by minimizing (32) alone [22].
As shown in Lemma 1, the conditions (23) and (26) are also
sufficient for searching a CCM candidate. Therefore, imposing
constraints (23) and (26) can help for optimization during
training neural network. And by introducing a dual metric
W (x) = M(z)~! and the change of variable n = M (x)d,
[18], the two conditions could be rewritten as

BT[-0;W + ZLW + 2AW]B, <0 (33)
BT[0p,W — 2W|B, =0,i=1,..,m (34)

Metric Net

Data Space

D:XXXXU s
Sampling

(z,z",u")
—_—

CCM Conditions
£(0u,0., 1, )

!

Valid Metric M (x)
Controller u(z,z*,u*)

—>

Input: (z,z*) Output: k(z,z*)

Fig. 3. The schematic of learning control contraction metric and tracking
controller simultaneously.

where B satisfies BIB = 0. By imposing constraints (33)
and (34), the risk functions are raised by

Le, (0ar) = E G(—Ci(x;0n))
(z,2*,u*)~p(D)
[CallF

Lo, (0m) = E
(@, ,u*)~p(D)
where Ci(x;05) represents the LHS of (33), Cy :=
(C3,...,C5,...,C5Y), C& denotes the LHS of (34).
Since the metric M () is required to be uniformly bounded,
it should be imposed constraint to bound the condition number
of metric. Construct the metric M (x) as

(35)

(36)

M (x;0y) = ol + m(x; HM)Tm(:c; Orr) (37)

where m(x;0,7) : R — R™ ™ is a neural network which
is parameterized with ;. This formulation guarantees that
M(x;0p) = oI, Ve € X. Thus, the smallest condition
number of metric is lower bounded by «.. The largest condition
number risk function could be developed as

Lt (0n) = G(@l — M (x;0r))
(2" u*)~p(D)

(38)

The upper bound of normalized distance within the RCI set
defined in Lemma 2 is bounded by
|z~ a* _ 7(0@)? _ 1

sup — = S —
zeQ(x*) d2 )\2Q2 A2

(39)

I I Ql

It is seen that the size of RCI set is related to the contracting
rate A and the overshoot constant /@ /«. In addition, as shown
in the numerical simulation section later, there is a trade-off
between the contracting rate A and overshoot constant \/&/a
on the control performance. Therefore, the selecting of two
parameters contracting rate A and overshoot constant /a@/a
is crucial to the control performance. But the relationship be-
tween two parameters and control performance is complicated
and it will take a lot of trial and error to choose an acceptable
but possibly not optimal set of parameters. Thus, instead of
tuning A and /@/« by hand, we developed a term

1

LRCI(01\17 )\a av Q) = p : (40)

=g gl

and considered this term as a part of loss function trying to
find two parameters A\ and /@ /« optimally and automatically.
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Therefore, for purpose of training the neural network with
the sampling data over the data space D, the following
empirical risk function is given by

L(GM, 0u7 >\7a7g) -

1 N

~ D Leem (@i, @7 w00, 0u) + Lo, (33 ) (41)
=1

+ Loy (4 00) + L (2 000)]) + CLret (O, A, @, )

where (z;, },u})N , contains samples distributed uniformly
over the data space D and ( is a user-defined parameter.

There are several implementations of auxiliary function G.
In this work, it is implemented as follows: Given a matrix
A € R™*" and sample K points {p; € R"|||p;|| = 1}£,, the
function G for penalizing non-positive definiteness is defined
as G(A) = % 21y max{0,p] Ap,}.

Note that in the most cases, the learning-based CCM
controller which is trained without Lrcy in (41) has a good
tracking performance. The parameters \, &, o need to be tuned
manually in this setting. Thus, this motivates us to impose
Lgcy in (41), which is conducive to tune A\, @, o automatically
and minimize the size of RCI set outer approximation. While
imposing Lgcy in (41) may lead bad guidance for searching a
valid CCM and feedback controller. To circumvent this issue,
this work adopts updating the weights of A\, @, o much slower
than updating those of M (x;0)/) and u(x, xz*,u*;6,). More
details of implementation will be discussed later.

Remark 1. As shown in [27], if B(x) has the sparse repre-
sentation as

B(x) _ |: O(n—m)xm :| (42)

b(z)
where b(x) € R™*™ is an invertible matrix, the condition (34)
would be satisfied automatically if the upper-left (n —m) x
(n—m) block of the dual metric W () is not a function of the
last m components of x. Hence, one could remove the L¢,
from the empirical risk function (41) by utilizing the above
property if the B(x) of a dynamical system has the sparse
representation as (42).

B. Theoretical Guarantees of Learning-Based Robust Track-
ing Controller

The condition (21) should be satisfied for all (x, z*, u*) €
D to guarantee that the learned metric M (x;0y,) is a valid
CCM. Thus, a theoretical analysis of learning-based tracking
controller is given in this section.

Lemma 3. For a Lipschitz continuous function f : X — R,
with Lipschitz constant Ly, discretizing the domain X’ into
a grid such that the distance between any two grid points is
less than p, if f(x;) < —Lyp holds for all grid points, then
f(x) <0 is satisfied for all x € X.

Proof. The function f is Lipschitz continuous with Lipschitz
constant Ly, then one has

|f (@)= f ()] < Lyp

43
S Lyut f@) < f@) < Lypt fl@) )

where £ € & and x; is the closest grid point to x. And
f(z;) < —Lyu holds for all grid points, the following
inequality holds

flx) <Lip+ f(z;) <0

which implies that if f(x;) < —Lsu holds for all grid points,
then f(x) < 0 holds for all z € X. O

(44)

The following proposition shows that the largest eigenvalue
function of the LHS of (21) has a Lipschitz constant if learned
metric and tracking controller has Lipschitz constants. Note
that M, A, B and K are functions of x, z* and u*.

Proposition 2. [22] Suppose L,;, La, Lp, Ly and Ly
are the Lipschitz constant of M , A, B, M and K, respec-
tively, and 2-norms of L4, Lp, Ly and Lg are bounded
by N4, N, Njp; and Ng, rwen, the largest
eigenvalue function Apax (M + M (A + BK) +2)\M) has a
Lipschitz constant Ly, +2(NyLa +NaLy + Ny NpLk +
NpNgLy + Ny NigLp + )\LM).

Theorem 1. If the condition (21) holds for all discrete samples
over the domain and the largest eigenvalue function of the
LHS of (21) has a Lipschitz constant, then the learned metric
M (x;0)r) is a valid CCM that admits a tracking controller
u(x, z*,u*;0,).

Proof. Lemma 3 shows that for a Lipschitz continuous func-
tion f, if f(x;) < —Lyp holds for all discrete samples where
the L; is Lipschitz constant and p is the distance between
discrete samples, then f(x) < 0 holds over the domain. Thus,
when the condition (21) holds for all discrete samples over the
domain and the largest eigenvalue function of the LHS of (21)
is Lipschitz continuous, then the learned metric M (x; 6,;) is
a valid CCM. Due to the properties of contraction system, the
feedback controller u(x, x*, u*;0,) could track any feasible
trajectory. This completes proof. O

As Theorem 1 shows, the satisfactory of condition (21) is
guaranteed by combining the discrete samples (Lemma 3) and
Lipschitz constant of LHS of (21). The Lipschitz constant
of deep neural network could be estimated by using many
methods, such as [28]-[30].

Remark 2. According to Lemma 3, one should formulate the
empirical risk function Leey(;, 2, ul; 00, 0,) by adding a
small positive constant o

Lccm = g(_(b(waw*aU*;eMveu) - U)
(w’w*fU'*)Np(,D)

(45)

which corresponds to the (w formulation guar-
antees that the Apa (M + M (A+ BK) + 2 \M) < —Lp
would hold over the domain when L., = 0.

C. Path Planning for Avoiding Space Debris

The objective of path planner is to generate a collision-free
reference trajectory for tracking when the deployment mission
is ongoing, which is described in Fig. 4. This work utilizes an
optimization-based approach for path planning.

Denote the nominal trajectory generated by path planner for
the unperturbed dynamics of (10) with tightened constraints as
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(z*,u*). Consider the RCI set (28) derived in Sec.II-B, the
tightened state and control constraints are given as

reX=XoQu' eU={ucl|u+k(z,z*)cl,

z € Qz*),Vx € X ,Vx* € X}

(46)

It is assumed that the sensors on tethered space robot could
obtain the relative position of space debris during deployment
to form a circle where the all detected space debris is located
in. The schematic of tethered space robot deployment is shown
in Fig. 4. Before deriving the formulation of path planner, the
safety constraints of avoiding space debris for tethered space
robot deployment are deduced as follows.

The collision-free task of tethered space robot deployment is
distinct from the other tasks. As shown in Fig. 4, except for the
tethered space robot, the space tether should not collide with
the space debris either. This means that both tethered space
robot and the space tether are desired to avoid colliding with
space debris during deployment. Since it is assumed that space
tether is straight and all detected space debris is located in a
circle, the collision checking of space tether with space debris
could be regarded as a problem of intersectionality between a
straight line and a circle. Note that the position of space tether
is constantly changing, the space tether is of variable length,
and tethered space robot is considered as a mass point. Thus,
the safety constraints of avoiding colliding with space debris
could be written as

W= {z e R* | Dy(x) > r,dy(z) >r} 47

where D, (x) denotes the distance between point p and the
space tether, d,(x) represents the distance between point p
and tethered space robot. The point p is the center of circle
where all detected space debris is located in.

The above safety constraints state that distance between
the point p and space tether, distance between the point p
and tethered space robot are both greater than the radius of
circle, which indicates that neither the space tether or tethered
space robot would collide with space debris. Considering the
safety of tethered space robot deployment in the presence of
disturbances, the safety margin [31] (the light blue area in
Fig. 4) is introduced. Then, safety constraint (47) could be
rewritten as

Wy = {x € R* ‘ Dp(w) >r+ hadp(w) >r+hp (48)

where h is the size of safety margin as shown in Fig. 4.

The definitions of D,(x) and dp(x) are depicted in Fig.
5. The tethered space robot is assumed as a mass point and
the safety constraints (47) and (48) do not take the size of
tethered space robot into consideration in this work. It is
obviously that the d,(x) is always greater than or equal to
D, (z). Therefore, in this setting, the safety constraints (47)
and (48) could be reduced to W := {& € R* | Dy(z) >
7}, Wh = {x € R* | Dy(x) > r + h}, respectively. If one
would like to consider the size of tethered space robot in the
collision avoidance problem, the safety constraints (47) and
(48) can be modified slightly by W := {z € R* | D,(z) >
7+ rrsr, dp(x) > 7+ r1s}, Wi = {z € R* | D,(x) >

n Safety Margin

Destination @, 1 - Space Debris

Reference Trajectory x*(t)

Platform

Y

0) m

Fig. 4. The illustration of TSR safe deployment. The radius and center of
the circle where all detected space debris is located in are denoted by r and
p, respectively.

T+ r1sr + R, dp(x) > r 4+ rrsg + b}, where the rgr is the
size of tethered space robot.

Next, the formulation of path planner is given as follows.
There are many schemes for motion planning [6]. As the
optimization-based approach could handle the constraints and
optimize the performance index simultaneously, this work
adopts it to generate reference trajectory. The formulation
of path planner for nominal dynamics considering the safety
constraints is given as follows.

min / ’ g(x(t), w(t))dt

to

st. &= f(x)+ Bu
x(0) = mo, x(ty) = zf
z(t) € XN Wy, u(t) €U Vi€ [to, ty]

(49)

where g(-) is the cost function, x and = + denote the initial
and terminal state of deployment, respectively. Note that the
safety margin is considered here. As discussed above, the
formulation (49) would result a safely nominal motion plans
(z*,u*) for tracking.

D. Safe Deployment for Tethered Space Robot

*

With the motion plan (z*,u*) obtained from path plan-
ner, one could adopt the learning-based tracking controller
u(x, z*,u*;0,) directly until the tethered space robot ar-
rives the destination. If the on-board computer could provide
sufficient computational resources, a receding-horizon scheme
where the reference trajectory is locally re-generated over a
short time horizon can also be considered. One of benefits
of this receding-horizon scheme is that it could further reduce
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Fig. 5. The definition of Dy (z) and dp(z)

the tracking cost as the local information is taken into account.
The implementation of it is stated as follows.

Given current state x(t;) of tethered space robot, a reference
path (*,u*) and the RCT set (28), solving the following MPC
problem at time instant ¢;

P(z,t;): V(z,t;) = ﬂ('r)r,l:izr(lti){V(:E(ti),ﬁ(ti))} (50a)
V(@) alt) = /t aw.ama o

st. x= f(x)+ Bu (50c)

x(t;) € QE(t;)) (50d)

Z(t) € XN Wy, u(t) et Vte [t t; +T) (50e)
2t +T)=a"(t; +T) (50f)

where () and u(t) are the predicted state and control input,
T denotes the predictive horizon and I(&(t), u(t)) is the stage
cost which is generally defined by

Wz (), u(t)) = %[@(t)TQi(t) +a(t)" Ru(t))

where @Q and R are positive definite matrices.

The terminal set (50f) is raised to ensure the recursive
feasibility of the MPC problem (50), which is guaranteed by
the following lemma.

(G

Lemma 4. If the MPC problem is feasible at the initial time-
step to, the problem (50) is recursively feasible for all ¢;.

Proof. See V-A O

The above MPC problem provides a receding-horizon pat-
tern for re-planning the reference trajectory locally online,
which should be considered as a local re-optimization planner.
Note that the initial state & of unperturbed dynamics is
also an optimization variable. The pipeline of this receding-
horizon path planner with learning-based tracking controller

is provided in Algorithm 1.

Algorithm 1 Safe deployment for tethered space robot

Offline
1: Input: Unperturbed dynamics, state constraint X and con-
trol constraint /.
2: Output: Metric M (x;0)s), contraction rate A, tracking
controller u(x,x*, u*;6,) and RCI set Q.
Online
3: Input: Initial state x(, terminal state x s, tightened state
constraint X’ and control constraint /.
4: Compute the nominal reference trajectory (x*,u*) € X x
U with path planner.
5: Initialization: foptimization = 0
6: while The tethered space robot does not reach target point

Ty do
7. if New space debris is detected by sensors then
8: Re-plan the nominal reference trajectory (x*, u*) by
solving optimization problem (49).
9: else
10: if ¢t — toptimization = ¢ then
11: Get (z*(;x(t),t), u*(-;u(t),t)) by solving (50).
12: Compute the controller output u(t) = w*(t) +
k(x(t), 2" (t); Ou).
13: Apply u(t) to the tethered space robot.
14: Update toptimization =t.
15: end if
16:  end if
17: end while

Theorem 2. Consider the dynamics (10) of tethered space
robot, if there are metric M (x) and controller u(x, *, u*)
satisfying the condition (21) for some constants A\, @ and «
over the domain, then the tethered space robot can be deployed
to the destination in the presence of bounded disturbances
while avoid colliding with all detected space debris.

Proof. As there exist metric M/(x) and controller
u(x, x*,u*) satisfying the CCM condition (21) over
the domain, Lemma 2 shows that the controller u(x, z*, u*)
could track any feasible trajectory and the distance between
trajectory of perturbed closed-loop dynamics and nominal
trajectory of unperturbed dynamics is bounded. Thus, with
the controller u(x, *, u*), tethered space robot can track the
nominal trajectory generated by path planner which considers
safety constraints. This completes proof. O

Remark 3. As stated above, a valid CCM admits a feedback
controller that could track any feasible trajectory and Theorem
2 does not rely on any specific information across different
tasks. Therefore, the proposed scheme is also applicable to
collision avoidance tasks of other spacecrafts if one can find
a valid CCM over the domain.

IV. SIMULATION RESULTS

In this section, the influences of term L¢o,, Le, and Lgcr
on the performance are discussed first. Then the optimal
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contracting rate A and overshoot constant \/a/« are given
by considering Lgcr in (41). Last, the proposed framework is
applied to deploy the tethered space robot to the destination
while keeping avoid colliding with any space debris.

A. Implementation Details

The metric M (x;65;) is modeled as M (x;0y) = oI +
m(x; 0y )T m(x; 0)r) where the m(x;0y,) is a 2-layer net-
works and each hidden layer contains 128 neurons. In this
way, the metric M (x;0)/) is a symmetric matrix satisfying
M (x;0)) = ol for all x and 6. The controller is designed
by u(x,z*,u*;0,) = u* + wy - tanh(wy - (x — x*)). The
weights w; = wi(x, x*;0,1) and we = wa(x, x*;0,2) are
modeled by two 2-layer neural network and each hidden layer
contains 128 neurons (0p; = {641 + 42}). The activation
functions in the neural networks are all set to hyperbolic tan-
gent function (tanh). The training set contains 130K samples
over the data space D. The neural networks are trained with
batch size of 512 and with the Adam optimizer. All training
in this work is implemented with Pytorch [32]. The nonlinear
optimization tool CasADi [33] is employed to solve the path
planning problem (49) and MPC problem (50) for re-planning
path locally.

The offline training is conducted on a Linux Laptop
equipped with Intel Core i9-12900H, 32G RAM and a
NVIDIA RTX 3060 GPU. The online tracking control and
planning algorithm are running on an embedding computer
equipped with Intel Core i5-1135G7 and 16GB RAM.

B. Evaluation of Learned Robust Tracking Controller

In this part, the impacts of the term L¢, (0ar), Lo, (0ar) and
Lrc1(Oar, A\, @, ) on the performance are investigated. The
reference trajectory for evaluating the learned robust tracking
controller is generated by solving the problem (49) but the
safety constraint Wy, is not considered. The initial and terminal
state are set as o = [0,0,—0.99,1]T and z; = [0,0,0,0]T.
The ended time t; is equal to 15 rad. The cost function
g(-) in problem (49) is defined as g(x(t),u(z)) = 1/2 -
[(t)TQx(t) + u(t)T Ru(t)] where Q = I € R4 R =
1/2 - I € R?*2. When evaluating of the learned tracking
controller, the disturbance in (10) is stochastic noise and the
upper bound of it is assumed to be 0.01, i.e., d=0.01.

First, we demonstrate that imposing the constraints
(33) and (34) is instrumental in finding a valid metric
M (x;0,r) that satisfies the CCM condition strictly. The term
Lrc1(Oar, A\, @, «) is not considered in (41) during training
neural network and «, @, A are chosen as 0.1,10,0.5, re-
spectively. The neural networks are trained for 18 epochs.
The probability of learned metric M (x; 0),) satisfying CCM
condition (21) over the domain with and without constraints
(33) and (34), is shown in Fig. 6. It is obvious that the
metric trained without constraints (33) and (34) will lead to
unsatisfactory performance of a high probability. This makes
it not applicable to obtain a valid tracking controller. And in
our experiments, training without constraints (33) and (34) of
more epochs does not improve the performance significantly.
This may be explained as the optimization problem of finding

10
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The probability that CCM Condition holds

Training with C1&C2 constraints
0.6 q Training without C1&C2 constraints
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Fig. 6. The probability of learned metric that CCM condition holds. (The
closer probability approaches 1, the better.)

a valid metric falling into the local optima sometimes. As
shown in Fig. 6, the probability of learned metric M (x; 05/)
satisfying CCM condition (21) over the domain with con-
straints (33) and (34) is very close to 1. In this sense, imposing
the constraints (33) and (34) into (41) could provide more
guidance for optimization to obtain a valid metric. Note that
this does not mean that it is impossible to learn a valid metric
with constraint (21) only. However, as shown in this work,
learning metric without constraints (33) and (34) will lead
unsatisfactory results of a high probability. Thus, in this work,
the constraints (33) and (34) are considered for learning a valid
metric.

The effects of two parameters contracting rate A and over-
shoot constant y/@/a on tracking performance are investi-
gated here. The tracking results of space tether length with
different values of A\ and \/@/« are plotted in Fig. 7. It is
clear that the rate of convergence of tracking controller is
fastest when A = 5 and the rate of convergence is slowest
when A = 2.5. This shows that the larger of contracting rate
A results the faster convergence to the reference trajectory.
However, to guarantee the CCM condition holds, the increase
in the value of A will be accompanied by an increase in the
value of \/@/c, which is verified in Fig. 7. Furthermore, the
increase in value of overshoot constant \/@/a may bring an
overshoot as shown in Fig. 7. It is intuitional that a larger
overshoot constant \/@/« results a more obvious overshoot.
Overall, a larger contracting rate A\ enables faster convergence
but also leads a larger overshoot constant /@ /« such that
the CCM condition can be held over the domain. There is a
trade-off between the contracting rate A and overshoot constant
\/@/a on the control performance.

To avoid tuning parameters A and /@/a by hand, a term
Lrc1(Oar, A\, @, «) is developed and considered as a part of
loss function (41) trying to find A and \/&/« optimally and
automatically. The more detailed elaboration of considering
term Lgrcr(Oar, A, @, @) in loss function (41) is stated here.
Since the metric was constructed by using (37), for the sake
of convenience, the lower bound « of metric M (x;0) is
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Fig. 7. The trajectories tracked by learned controllers with different values
of Aand & (o = 0.1).

set to a constant during training the neural networks, i.e.,
a = 0.1 such that condition M (x;0) = ol holds for every
point over the data space. The user-defined parameter ( is
setto 1 x 1072, i.e., (=1x 10~2. The contraction rate \
and upper bound of metric @ are also represented by neural
networks for optimization. The neural networks are trained for
400 epochs. As mentioned before, imposing Lrcy may lead
inaccurate guidance for searching a valid CCM especially at
the beginning of training. To alleviate this issuse, we update
the weights of A and @ every 10 epochs, which is much slower
than updating weights of metric M (x;60),) and controller
u(x, x*,u*;0,). The optimal value of A is found by the
neural networks which equals to 2.6748 and the upper bound
@ of metric is 21.3451, i.e., Aoptimal = 2.6748, @ = 21.3451,
Va/a = 14.6100.

In the offline phase, the CCM tracking controller is learned
from data such that the there is no need to solve a optimization
problem of minimizing the geodesic in the online execution
phase, which is a superiority of proposed scheme compared to
others CCM-based methods. Moreover, the size of “tube” is
also optimized for improving the online tracking performance
in the presence of disturbances. In this sense, by comprehen-
sively utilizing the prior information of collision avoidance
task offline, the learned tracking controller of proposed scheme
is ready for online execution for the safe deployment of
tethered space robot.

C. Safe Deployment with Learned Tracking Controller

This part shows that the proposed Algorithm 1 could deploy
the tethered space robot from initial position to destination
safely. The physical conditions of deployment mission are pre-
sented here: the total length of tether is 2000 m, the equivalent
mass m is set to 10 kg and the orbit angular velocity is 0.00117
rad/s. The coordinate of in-plane deployment is shown Fig. 8.
The initial position where the deployment mission starts is
(0, —2000 m) and the destination is (0 m,0 m). The center of
circle where all space debris are located in is assumed to be at
point (300 m, —1200 m), the radius of this circle is set to be 80
m and the size of safety margin is set to 40 m, i.e., h = 40 m.
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Fig. 8. The trajectories of tethered space robot with different strategies. The
red upper triangle is the center of the circle containing space debris. The
area between the two red circles is the safety margin as shown in Fig.4. The
orange dashed line is the initial planed path by solving the problem (49). The
black dash-dot line denotes the re-planned path by solving the problem (50).
The black dotted line represents the trajectory by adopting learned tracking
controller directly. The lavender solid line is the trajectory by implementing
Algorithm 1.

The reference trajectory is generated by solving problem (49).
The contraction rate A, lower bound of metric o and upper
bound of metric & are set 2.6784,0.1,21.3451, respectively.
The disturbance in dynamics (10) is stochastic noise and upper
bound of it is set to 0.01, i.e., d = 0.01. The predictive horizon
T is chosen to be 0.3 s and the MPC problem (50) is solved
every 0.15 s, i.e, § = 0.15 s. The positive definite matrices in
stage cost (51) are setto Q@ = I € R4 R =1/2-T € R?*2,

The tracking results of adopting the learned tracking con-
troller directly and implementing the Algorithm 1 are depicted
in Fig. 8 and Fig. 9. Note that the tethered space robot is
assumed to be a mass point in this work. There are three
observations. First, the path planner considers the constraint
(48) into optimization problem such that the generated motion
plan can be reliably executed with the learned tracking con-
troller. As stated before, if the size of RCI set is smaller than
that of the safety margin for ¢ > 0, then the actual trajectory
of space tethered robot would not collide with any detected
space debris. In this sense, with the optimized “tube” offline,
one could adjust the size of safety margin of constraint (48)
to generate a more safe motion plan. Further, utilizing the
learned tracking controller directly and Algorithm 1 can both
deploy the tethered space robot without any collisions with
space debris. The cost of Algorithm 1 and implementing the
learned robust tracking controller directly are 1.234 x 10%
and 2.896 x 10*, respectively. The cost of Algorithm 1 is
decreased by 57.38% than that of implementing the learned
robust tracking controller directly. This shows that the tracking
performance of Algorithm 1 is better than that of implementing
the learned robust tracking controller directly. However, this
requests sufficient computational resources. If there is no
additional computation resource to implement the Algorithm
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Fig. 9. The inplane angle and tether length trajectories of tethered space robot with different strategies. The red upper triangle is the center of the circle
containing space debris. The orange dashed line is the initial planed path by solving the problem (49). The black dash-dot line denotes the re-planned path
by solving the problem (50). The black dotted line represents the trajectory by adopting learned tracking controller directly. The lavender solid line is the

trajectory by implementing Algorithm 1.

1 in real-time, adopting the learned tracking controller directly
is a middle ground since it also provides the convergence and
safety guarantees. Last, the local information (e.g., realized
disturbances) is taken into account when solving the MPC
problem (50) such that re-planned path is more applicable
than the nominal motion plan. The invariant “tube” (28) would
lead conservativeness compared to variant “tube” but it does
not need to compute tightened state and control constraint sets
online, which could save computational resource for other on-
board tasks.

As stated above, the proposed scheme gives two implemen-
tations of online execution part. And the offline training part
of proposed scheme admits a tracking controller that could
execute a nominal motion plan robustly. Thus, this means
that it can combine any other motion planner for collision
avoidance tasks, which demonstrates the flexibility of proposed
scheme.

V. CONCLUSION

This paper proposes a general scheme to deploy the tethered
space robot to destination while keep avoiding colliding with
space debris. The proposed scheme decomposes the collision
avoidance problem into offline and online components, which
offers flexibility for diverse space tasks. In the offline phase,
inspired by contraction theory, the robust tracking controller is
learned from data. Additionally, the “tube” where the tethered
space robot would stay within is also optimized for enhancing
the online tracking performance. In the online phase, the mo-
tion planner generates the nominal trajectory by considering
safety constraints, and then the learned tracking controller exe-
cutes this motion plan robustly. It is promising to state that the
proposed scheme can evolve many other collision avoidance
methods by combining different motion planner, which is very
flexible. And the proposed scheme could be easily extended
to other space related collision avoidance tasks. Future work
includes hardware experiments and the derivation of dynamical

“tube” to mitigate the conservativeness of re-planned nominal
reference.

APPENDIX
A. Proof of Lemma 4
Suppose the solution of problem (50) at time-step ¢; is
denoted by uw*(-;x(t;),t;) : [ti,t; + T] — U. Apply this
control sequence to the nominal system & = f(x) + Bu,
the following trajectory satisfies

(T 2(t), t;) € XNWh T € [ti, ti + T

z(t + Tix(ty), i) = 2" (t; + 1)
Because of the RCI set property, the actual state x(t; 1) of
perturbed system at time-step t;+1 = t; + d is guaranteed
to lie within the set Q(&*(¢;41;x(t;),t;)) with the tracking
controller. Consider the following solution of problem (50) at
time-step t;41
u* (T3 (t:))
u” (7)

The control sequence (52) is a concatenation of the tail

section of the last solution with the nominal solution. Thus,
under above control law, the trajectory of nominal system at

[t;+6,t; 4+ T)] is equal to the corresponding segment trajectory
i*(-; iB(tl‘), ti), ie.

T(r;x(t;+0),t; +0) =& (1;2(t;:), ;)

T €t +0,t;+T)

(52)
T E [tz—i—T,tl—}—&—i—T}

u(r) =

T € [ti + 0,1+ T)

(53)
It is obvious that this segment of trajectory is satisfied with the
constraint of problem (50) and the endpoint of this segment
satisfies (terminal constraint (50f))

The trajectory of nominal system at [t; +¢,t; +3 + T is the
nominal path plan x*. Therefore, the solution (52) is feasible
at time-step t;y;, which proves the recursive feasibility of
problem (50).
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B. Detailed results of training neural networks

We conducted two series of experiments in the simulation
section.

1) In the first series of experiments for demonstrating
benefits of imposing constraints (33) and (34), there are two
cases: “Training C1&C2 constraints” and “Training without
C1&C2 constraints”. The loss function of the first case is
defined by

1
N Z[Lccm(wiv il:j, uj; 0M7 6‘71)—"_

i=1

Le, (2i;00r) + Loy (265 00r) + L (w45 001)]

and the loss function of second case is defined by

£:

N
L= % ;[Lccm(wia x;,ui; 00, 0) + L (205 00r)]
Note that since the matrix B of (10) has sparse representation
(42), the term Lc, is always equal to zero. For each case,
we conducted the training for five times. The value of loss
function is plotted in Fig. 10(a). It shows that training without
constraints (33) and (34) is not stable and the value of loss
function does not converge to zero. After training for 18
epochs, the average probability of 5 trained metrics M (x; 051)
satisfying CCM condition over the domain is around 0.82 and
the variance is very large (see yellow curve and region in Fig.
6). To address this problem, we imposing constraints (33) and
(34) into loss function £ = % Zi\; [Leem+Le, + Lo, + L)
In this case, after training 18 epochs, the average probability
of 5 trained metrics M (x; 0,) satisfying CCM condition over
the domain is around 0.996 and the variance is very small (see
blue curve and region in Fig. 6).

The above results indicate that imposing constraints (33)
and (34) is helpful for obtaining a valid metric. It is promis-
ing to state that, in the first case (“Training with C1&C2
constraints”), the probability of trained metric M (x;0ys)
satisfying CCM condition over the domain is not strictly equal
to 1 but very close to 1. This means the inequality (21)
does not hold for all points in domain. However, the learned
controller can still track the reference trajectories convergently
(see the results of Fig. 7 - Fig. 9). Therefore, for the trained
metric whose probability satisfying CCM conditions over the
domain is very close to 1 but not strictly equal to 1, we still
regard this metric as a valid metric.

2) In the second series of experiments, the term Lgcy is
considered as a part of loss function. And we also conducted
the training for five times. The value of loss function is plotted
in Fig. 10(b). Note that the value of loss function does not
converge to zero as the term Lgcy does not equal to zero.
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